Suppr超能文献

开发COVID-19预后预测模型:资源有限医院的宝贵工具。

Developing Prediction Models for COVID-19 Outcomes: A Valuable Tool for Resource-Limited Hospitals.

作者信息

Popescu Irina-Maria, Margan Madalin-Marius, Anghel Mariana, Mocanu Alexandra, Laitin Sorina Maria Denisa, Margan Roxana, Capraru Ionut Dragos, Tene Alexandra-Andreea, Gal-Nadasan Emanuela-Georgiana, Cirnatu Daniela, Chicin Gratiana Nicoleta, Oancea Cristian, Anghel Andrei

机构信息

Department of Infectious Diseases, Discipline of Epidemiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.

Department of Functional Sciences, Discipline of Public Health, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.

出版信息

Int J Gen Med. 2023 Jul 19;16:3053-3065. doi: 10.2147/IJGM.S419206. eCollection 2023.

Abstract

PURPOSE

Coronavirus disease is a global pandemic with millions of confirmed cases and hundreds of thousands of deaths worldwide that continues to create a significant burden on the healthcare systems. The aim of this study was to determine the patient clinical and paraclinical profiles that associate with COVID-19 unfavourable outcome and generate a prediction model that could separate between high-risk and low-risk groups.

PATIENTS AND METHODS

The present study is a multivariate observational retrospective study. A total of 483 patients, residents of the municipality of Timișoara, the biggest city in the Western Region of Romania, were included in the study group that was further divided into 3 sub-groups in accordance with the disease severity form.

RESULTS

Increased age (cOR=1.09, 95% CI: 1.06-1.11, p<0.001), cardiovascular diseases (cOR=3.37, 95% CI: 1.96-6.08, p<0.001), renal disease (cOR=4.26, 95% CI: 2.13-8.52, p<0.001), and neurological disorder (cOR=5.46, 95% CI: 2.71-11.01, p<0.001) were all independently significantly correlated with an unfavourable outcome in the study group. The severe form increases the risk of an unfavourable outcome 19.59 times (95% CI: 11.57-34.10, p<0.001), while older age remains an independent risk factor even when disease severity is included in the statistical model. An unfavourable outcome was positively associated with increased values for the following paraclinical parameters: white blood count (WBC; cOR=1.10, 95% CI: 1.05-1.15, p<0.001), absolute neutrophil count (ANC; cOR=1.15, 95% CI: 1.09-1.21, p<0.001) and C-reactive protein (CRP; cOR=1.007, 95% CI: 1.004-1.009, p<0.001). The best prediction model including age, ANC and CRP achieved a receiver operating characteristic (ROC) curve with the area under the curve (AUC) = 0.845 (95% CI: 0.813-0.877, p<0.001); cut-off value = 0.12; sensitivity = 72.3%; specificity = 83.9%.

CONCLUSION

This model and risk profiling may contribute to a more precise allocation of limited healthcare resources in a clinical setup and can guide the development of strategies for disease management.

摘要

目的

冠状病毒病是一场全球大流行疾病,全球有数百万确诊病例和数十万死亡病例,继续给医疗系统带来巨大负担。本研究的目的是确定与COVID-19不良结局相关的患者临床和辅助检查特征,并生成一个能够区分高风险和低风险组的预测模型。

患者与方法

本研究是一项多变量观察性回顾性研究。共有483名来自罗马尼亚西部地区最大城市蒂米什瓦拉市的患者被纳入研究组,并根据疾病严重程度进一步分为3个亚组。

结果

年龄增加(校正比值比[cOR]=1.09,95%置信区间[CI]:1.06-1.11,p<0.001)、心血管疾病(cOR=3.37,95%CI:1.96-6.08,p<0.001)、肾脏疾病(cOR=4.26,95%CI:2.13-8.52,p<0.001)和神经系统疾病(cOR=5.46,95%CI:2.71-11.01,p<0.001)在研究组中均与不良结局独立显著相关。重症形式使不良结局风险增加19.59倍(95%CI:11.57-34.10,p<0.001),而即使将疾病严重程度纳入统计模型,年龄较大仍是一个独立的风险因素。不良结局与以下辅助检查参数值升高呈正相关:白细胞计数(WBC;cOR=1.10,95%CI:1.05-1.15,p<0.001)、绝对中性粒细胞计数(ANC;cOR=1.15,95%CI:1.09-1.21,p<0.001)和C反应蛋白(CRP;cOR=1.007,95%CI:1.004-1.009,p<0.001)。包含年龄、ANC和CRP的最佳预测模型获得了一条受试者工作特征(ROC)曲线,曲线下面积(AUC)=0.845(95%CI:0.813-0.877,p<0.001);临界值=0.12;灵敏度=72.3%;特异性=83.9%。

结论

该模型和风险评估可能有助于在临床环境中更精确地分配有限的医疗资源,并可指导疾病管理策略的制定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5441/10363379/1e56ffee9fd3/IJGM-16-3053-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验