AI Center, Korea University College of Medicine, Seoul, Korea.
Biomedical Research Institute, Korea University College of Medicine, Seoul, Korea.
BMC Med Inform Decis Mak. 2021 Feb 1;21(1):33. doi: 10.1186/s12911-020-01314-8.
This study developed a diagnostic tool to automatically detect normal, unclear and tumor images from colonoscopy videos using artificial intelligence.
For the creation of training and validation sets, 47,555 images in the jpg format were extracted from colonoscopy videos for 24 patients in Korea University Anam Hospital. A gastroenterologist with the clinical experience of 15 years divided the 47,555 images into three classes of Normal (25,895), Unclear (2038) and Tumor (19,622). A single shot detector, a deep learning framework designed for object detection, was trained using the 47,255 images and validated with two sets of 300 images-each validation set included 150 images (50 normal, 50 unclear and 50 tumor cases). Half of the 47,255 images were used for building the model and the other half were used for testing the model. The learning rate of the model was 0.0001 during 250 epochs (training cycles).
The average accuracy, precision, recall, and F1 score over the category were 0.9067, 0.9744, 0.9067 and 0.9393, respectively. These performance measures had no change with respect to the intersection-over-union threshold (0.45, 0.50, and 0.55). This finding suggests the stability of the model.
Automated detection of normal, unclear and tumor images from colonoscopy videos is possible by using a deep learning framework. This is expected to provide an invaluable decision supporting system for clinical experts.
本研究开发了一种诊断工具,使用人工智能自动从结肠镜检查视频中检测正常、不清楚和肿瘤图像。
为了创建训练和验证集,从韩国大学安岩医院的 24 名患者的结肠镜检查视频中提取了 47555 张 jpg 格式的图像。一位具有 15 年临床经验的胃肠病学家将这 47555 张图像分为正常(25895 张)、不清楚(2038 张)和肿瘤(19622 张)三类。使用 47255 张图像对单镜头探测器进行了训练,单镜头探测器是一种专为目标检测而设计的深度学习框架。然后使用两组 300 张图像对其进行了验证——每组验证集包括 150 张图像(50 张正常、50 张不清楚和 50 张肿瘤病例)。将 47255 张图像的一半用于构建模型,另一半用于测试模型。在 250 个训练周期中,模型的学习率为 0.0001。
在类别上,平均准确率、精度、召回率和 F1 得分为 0.9067、0.9744、0.9067 和 0.9393,这些性能指标在交并比阈值(0.45、0.50 和 0.55)方面没有变化。这一发现表明该模型具有稳定性。
通过使用深度学习框架,从结肠镜检查视频中自动检测正常、不清楚和肿瘤图像是可行的。这有望为临床专家提供一个非常有价值的决策支持系统。