Suppr超能文献

人工智能在自发性早产和分娩早期诊断中的应用

Application of Artificial Intelligence in Early Diagnosis of Spontaneous Preterm Labor and Birth.

作者信息

Lee Kwang-Sig, Ahn Ki Hoon

机构信息

AI Center, Korea University Anam Hospital, Seoul 02841, Korea.

Department of Obstetrics & Gynecology, Korea University Anam Hospital, Seoul 02841, Korea.

出版信息

Diagnostics (Basel). 2020 Sep 22;10(9):733. doi: 10.3390/diagnostics10090733.

Abstract

This study reviews the current status and future prospective of knowledge on the use of artificial intelligence for the prediction of spontaneous preterm labor and birth ("preterm birth" hereafter). The summary of review suggests that different machine learning approaches would be optimal for different types of data regarding the prediction of preterm birth: the artificial neural network, logistic regression and/or the random forest for numeric data; the support vector machine for electrohysterogram data; the recurrent neural network for text data; and the convolutional neural network for image data. The ranges of performance measures were 0.79-0.94 for accuracy, 0.22-0.97 for sensitivity, 0.86-1.00 for specificity, and 0.54-0.83 for the area under the receiver operating characteristic curve. The following maternal variables were reported to be major determinants of preterm birth: delivery and pregestational body mass index, age, parity, predelivery systolic and diastolic blood pressure, twins, below high school graduation, infant sex, prior preterm birth, progesterone medication history, upper gastrointestinal tract symptom, gastroesophageal reflux disease, Helicobacter pylori, urban region, calcium channel blocker medication history, gestational diabetes mellitus, prior cone biopsy, cervical length, myomas and adenomyosis, insurance, marriage, religion, systemic lupus erythematosus, hydroxychloroquine sulfate, and increased cerebrospinal fluid and reduced cortical folding due to impaired brain growth.

摘要

本研究综述了利用人工智能预测自发性早产和分娩(以下简称“早产”)的知识现状和未来前景。综述总结表明,对于早产预测的不同类型数据,不同的机器学习方法将是最优选择:对于数值数据,人工神经网络、逻辑回归和/或随机森林;对于子宫电图数据,支持向量机;对于文本数据,循环神经网络;对于图像数据,卷积神经网络。性能指标范围为:准确率0.79 - 0.94,灵敏度0.22 - 0.97,特异度0.86 - 1.00,受试者工作特征曲线下面积0.54 - 0.83。以下母体变量据报道是早产的主要决定因素:分娩情况和孕前体重指数、年龄、产次、产前收缩压和舒张压、双胞胎、高中以下学历、婴儿性别、既往早产史、孕激素用药史、上消化道症状、胃食管反流病、幽门螺杆菌、城市地区、钙通道阻滞剂用药史、妊娠期糖尿病、既往宫颈锥形切除术、宫颈长度、肌瘤和子宫腺肌病、保险、婚姻状况、宗教信仰、系统性红斑狼疮、硫酸羟氯喹,以及因脑发育受损导致的脑脊液增加和皮质折叠减少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0f4/7555184/1a527a2c9984/diagnostics-10-00733-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验