Department of Gastroenterology, Korea University Anam Hospital, Seoul, Korea.
AI Center, Korea University Anam Hospital, Seoul, Korea.
Korean J Intern Med. 2024 Jul;39(4):555-562. doi: 10.3904/kjim.2023.332. Epub 2024 May 2.
This study reviews the recent progress of artificial intelligence for colonoscopy from detection to diagnosis. The source of data was 27 original studies in PubMed. The search terms were "colonoscopy" (title) and "deep learning" (abstract). The eligibility criteria were: (1) the dependent variable of gastrointestinal disease; (2) the interventions of deep learning for classification, detection and/or segmentation for colonoscopy; (3) the outcomes of accuracy, sensitivity, specificity, area under the curve (AUC), precision, F1, intersection of union (IOU), Dice and/or inference frames per second (FPS); (3) the publication year of 2021 or later; (4) the publication language of English. Based on the results of this study, different deep learning methods would be appropriate for different tasks for colonoscopy, e.g., Efficientnet with neural architecture search (AUC 99.8%) in the case of classification, You Only Look Once with the instance tracking head (F1 96.3%) in the case of detection, and Unet with dense-dilation-residual blocks (Dice 97.3%) in the case of segmentation. Their performance measures reported varied within 74.0-95.0% for accuracy, 60.0-93.0% for sensitivity, 60.0-100.0% for specificity, 71.0-99.8% for the AUC, 70.1-93.3% for precision, 81.0-96.3% for F1, 57.2-89.5% for the IOU, 75.1-97.3% for Dice and 66-182 for FPS. In conclusion, artificial intelligence provides an effective, non-invasive decision support system for colonoscopy from detection to diagnosis.
本研究回顾了人工智能在结肠镜检查领域从检测到诊断的最新进展。数据来源是 PubMed 上的 27 项原始研究。检索词为“colonoscopy”(标题)和“deep learning”(摘要)。纳入标准为:(1)胃肠道疾病的因变量;(2)深度学习用于分类、检测和/或分割结肠镜检查的干预措施;(3)准确性、敏感度、特异度、曲线下面积(AUC)、精度、F1、交并比(IOU)、Dice 和/或推理帧率(FPS)等结果;(3)发表年份为 2021 年或之后;(4)发表语言为英语。基于本研究的结果,不同的深度学习方法适用于结肠镜检查的不同任务,例如,Efficientnet 结合神经架构搜索(AUC 99.8%)用于分类,You Only Look Once 结合实例跟踪头(F1 96.3%)用于检测,Unet 结合密集-扩张-残差块(Dice 97.3%)用于分割。他们报告的性能指标在准确性方面为 74.0-95.0%,敏感度为 60.0-93.0%,特异度为 60.0-100.0%,AUC 为 71.0-99.8%,精度为 70.1-93.3%,F1 为 81.0-96.3%,IOU 为 57.2-89.5%,Dice 为 75.1-97.3%,FPS 为 66-182。总之,人工智能为结肠镜检查从检测到诊断提供了一种有效、非侵入性的决策支持系统。
Korean J Intern Med. 2024-7
Expert Rev Gastroenterol Hepatol. 2019-11-30
Dentomaxillofac Radiol. 2024-10-1
IEEE J Transl Eng Health Med. 2022
BMC Oral Health. 2024-2-24
Front Med (Lausanne). 2025-5-30
Diagnostics (Basel). 2023-1-4
Diagnostics (Basel). 2022-12-30
Front Bioeng Biotechnol. 2022-10-7
Med Image Anal. 2022-11
Med Image Comput Comput Assist Interv. 2022-9
Artif Intell Med. 2022-9
Psychiatry Investig. 2022-8