文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

结肠镜检查中的人工智能:从检测到诊断。

Artificial intelligence in colonoscopy: from detection to diagnosis.

机构信息

Department of Gastroenterology, Korea University Anam Hospital, Seoul, Korea.

AI Center, Korea University Anam Hospital, Seoul, Korea.

出版信息

Korean J Intern Med. 2024 Jul;39(4):555-562. doi: 10.3904/kjim.2023.332. Epub 2024 May 2.


DOI:10.3904/kjim.2023.332
PMID:38695105
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11236815/
Abstract

This study reviews the recent progress of artificial intelligence for colonoscopy from detection to diagnosis. The source of data was 27 original studies in PubMed. The search terms were "colonoscopy" (title) and "deep learning" (abstract). The eligibility criteria were: (1) the dependent variable of gastrointestinal disease; (2) the interventions of deep learning for classification, detection and/or segmentation for colonoscopy; (3) the outcomes of accuracy, sensitivity, specificity, area under the curve (AUC), precision, F1, intersection of union (IOU), Dice and/or inference frames per second (FPS); (3) the publication year of 2021 or later; (4) the publication language of English. Based on the results of this study, different deep learning methods would be appropriate for different tasks for colonoscopy, e.g., Efficientnet with neural architecture search (AUC 99.8%) in the case of classification, You Only Look Once with the instance tracking head (F1 96.3%) in the case of detection, and Unet with dense-dilation-residual blocks (Dice 97.3%) in the case of segmentation. Their performance measures reported varied within 74.0-95.0% for accuracy, 60.0-93.0% for sensitivity, 60.0-100.0% for specificity, 71.0-99.8% for the AUC, 70.1-93.3% for precision, 81.0-96.3% for F1, 57.2-89.5% for the IOU, 75.1-97.3% for Dice and 66-182 for FPS. In conclusion, artificial intelligence provides an effective, non-invasive decision support system for colonoscopy from detection to diagnosis.

摘要

本研究回顾了人工智能在结肠镜检查领域从检测到诊断的最新进展。数据来源是 PubMed 上的 27 项原始研究。检索词为“colonoscopy”(标题)和“deep learning”(摘要)。纳入标准为:(1)胃肠道疾病的因变量;(2)深度学习用于分类、检测和/或分割结肠镜检查的干预措施;(3)准确性、敏感度、特异度、曲线下面积(AUC)、精度、F1、交并比(IOU)、Dice 和/或推理帧率(FPS)等结果;(3)发表年份为 2021 年或之后;(4)发表语言为英语。基于本研究的结果,不同的深度学习方法适用于结肠镜检查的不同任务,例如,Efficientnet 结合神经架构搜索(AUC 99.8%)用于分类,You Only Look Once 结合实例跟踪头(F1 96.3%)用于检测,Unet 结合密集-扩张-残差块(Dice 97.3%)用于分割。他们报告的性能指标在准确性方面为 74.0-95.0%,敏感度为 60.0-93.0%,特异度为 60.0-100.0%,AUC 为 71.0-99.8%,精度为 70.1-93.3%,F1 为 81.0-96.3%,IOU 为 57.2-89.5%,Dice 为 75.1-97.3%,FPS 为 66-182。总之,人工智能为结肠镜检查从检测到诊断提供了一种有效、非侵入性的决策支持系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7082/11236815/b9d21640e364/kjim-2023-332f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7082/11236815/b9d21640e364/kjim-2023-332f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7082/11236815/b9d21640e364/kjim-2023-332f1.jpg

相似文献

[1]
Artificial intelligence in colonoscopy: from detection to diagnosis.

Korean J Intern Med. 2024-7

[2]
An overview of deep learning algorithms and water exchange in colonoscopy in improving adenoma detection.

Expert Rev Gastroenterol Hepatol. 2019-11-30

[3]
CheXLocNet: Automatic localization of pneumothorax in chest radiographs using deep convolutional neural networks.

PLoS One. 2020

[4]
Automated polyp segmentation for colonoscopy images: A method based on convolutional neural networks and ensemble learning.

Med Phys. 2019-10-31

[5]
Automatic deep learning detection of overhanging restorations in bitewing radiographs.

Dentomaxillofac Radiol. 2024-10-1

[6]
Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation.

IEEE J Transl Eng Health Med. 2022

[7]
The development and validation of pathological sections based U-Net deep learning segmentation model for the detection of esophageal mucosa and squamous cell neoplasm.

J Gastrointest Oncol. 2023-10-31

[8]
Utilization of artificial intelligence in minimally invasive right adrenalectomy: recognition of anatomical landmarks with deep learning.

Acta Chir Belg. 2024-12

[9]
Can a Deep-learning Model for the Automated Detection of Vertebral Fractures Approach the Performance Level of Human Subspecialists?

Clin Orthop Relat Res. 2021-7-1

[10]
Artificial intelligence for radiographic imaging detection of caries lesions: a systematic review.

BMC Oral Health. 2024-2-24

引用本文的文献

[1]
Artificial intelligence for reducing missed detection of adenomas and polyps in colonoscopy: A systematic review and meta-analysis.

World J Gastroenterol. 2025-6-7

[2]
Artificial intelligence in endoscopy and colonoscopy: a comprehensive bibliometric analysis of global research trends.

Front Med (Lausanne). 2025-5-30

本文引用的文献

[1]
Benefits and challenges in implementation of artificial intelligence in colonoscopy: World Endoscopy Organization position statement.

Dig Endosc. 2023-5

[2]
Dual encoder-decoder-based deep polyp segmentation network for colonoscopy images.

Sci Rep. 2023-1-21

[3]
A Novel Computer-Aided Detection/Diagnosis System for Detection and Classification of Polyps in Colonoscopy.

Diagnostics (Basel). 2023-1-4

[4]
GAR-Net: Guided Attention Residual Network for Polyp Segmentation from Colonoscopy Video Frames.

Diagnostics (Basel). 2022-12-30

[5]
N-Net: Lesion region segmentations using the generalized hybrid dilated convolutions for polyps in colonoscopy images.

Front Bioeng Biotechnol. 2022-10-7

[6]
Polyp detection on video colonoscopy using a hybrid 2D/3D CNN.

Med Image Anal. 2022-11

[7]
CLTS-GAN: Color-Lighting-Texture-Specular Reflection Augmentation for Colonoscopy.

Med Image Comput Comput Assist Interv. 2022-9

[8]
Gastrointestinal Tract Polyp Anomaly Segmentation on Colonoscopy Images Using Graft-U-Net.

J Pers Med. 2022-9-6

[9]
An end-to-end tracking method for polyp detectors in colonoscopy videos.

Artif Intell Med. 2022-9

[10]
Machine Learning on Early Diagnosis of Depression.

Psychiatry Investig. 2022-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索