Shi Lawrence, Li Qiliang
Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22030, USA.
Phys Chem Chem Phys. 2021 Feb 7;23(5):3595-3605. doi: 10.1039/d0cp06231f. Epub 2021 Feb 1.
Topological insulators (TIs), exhibiting the quantum spin Hall (QSH) effect, are promising for developing dissipationless transport devices that can be realized under a wide range of temperatures. The search for new two-dimensional (2D) TIs is essential for TIs to be utilized at room-temperature, with applications in optoelectronics, spintronics, and magnetic sensors. In this work, we used first-principles calculations to investigate the geometric, electronic, and topological properties of GeX and GeMX (M = C, N, P, As; X = H, F, Cl, Br, I, O, S, Se, Te). In 26 of these materials, the QSH effect is demonstrated by a spin-orbit coupling (SOC) induced large band gap and a band inversion at the Γ point, similar to the case of an HgTe quantum well. In addition, engineering the intra-layer strain of certain GeMX species can transform them from a regular insulator into a 2D TI. This work demonstrates that asymmetrical chemical functionalization is a promising method to induce the QSH effect in 2D hexagonal materials, paving the way for practical application of TIs in electronics.
拓扑绝缘体(TIs)表现出量子自旋霍尔(QSH)效应,有望用于开发可在很宽温度范围内实现的无耗散输运器件。寻找新型二维(2D)拓扑绝缘体对于拓扑绝缘体在室温下的应用至关重要,其应用包括光电子学、自旋电子学和磁传感器。在这项工作中,我们使用第一性原理计算来研究GeX和GeMX(M = C、N、P、As;X = H、F、Cl、Br、I、O、S、Se、Te)的几何、电子和拓扑性质。在这些材料中的26种中,通过自旋轨道耦合(SOC)诱导的大带隙和Γ点处的能带反转证明了QSH效应,这与HgTe量子阱的情况类似。此外,对某些GeMX物种的层内应变进行调控可以将它们从常规绝缘体转变为二维拓扑绝缘体。这项工作表明,不对称化学功能化是在二维六角形材料中诱导QSH效应的一种有前途的方法,为拓扑绝缘体在电子学中的实际应用铺平了道路。