Suppr超能文献

基于代谢组学的杂种优势预测有助于优质水稻的选育。

Metabolome-based prediction of yield heterosis contributes to the breeding of elite rice.

机构信息

State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China.

State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China

出版信息

Life Sci Alliance. 2019 Dec 13;3(1). doi: 10.26508/lsa.201900551. Print 2020 Jan.

Abstract

Improvement of the breeding efficiencies of heterotic crops adaptive to different conditions can mitigate the food shortage crisis due to overpopulation and climate change. To date, diverse molecular markers have been used to guide field phenotypic selection, whereas accurate predictions of complex heterotic traits are rarely reported. Here, we present a practical metabolome-based strategy for predicting yield heterosis in rice. The dissection of population structure based on untargeted metabolite profiles as the initial critical step in multivariate modeling performed better than the screening of predictive variables. Then the assessment of each predictive variable's contribution to predictive models according to all latent factors was more precise than the conventional first one. Metabolites belonging to specific pathways were closely associated with yield heterosis, and the up-regulation of galactose metabolism promoted robust yield heterosis in hybrids under different growth conditions. Our study demonstrates that metabolome-based predictive models with correctly dissected population structure and screened predictive variables can facilitate accurate predictions of yield heterosis and have great potential for establishing molecular marker-based precision breeding programs.

摘要

改良适应不同条件的杂种作物的繁殖效率可以缓解由于人口过剩和气候变化导致的粮食短缺危机。迄今为止,已经使用了多种分子标记来指导田间表型选择,而复杂杂种优势性状的准确预测却很少有报道。在这里,我们提出了一种实用的基于代谢组学的预测水稻产量杂种优势的策略。基于非靶向代谢物图谱的群体结构剖析是多元建模的初始关键步骤,其表现优于预测变量的筛选。然后,根据所有潜在因素评估每个预测变量对预测模型的贡献比传统的第一个方法更精确。属于特定途径的代谢物与产量杂种优势密切相关,并且在不同生长条件下,半乳糖代谢的上调促进了杂种的强大产量杂种优势。我们的研究表明,具有正确剖析的群体结构和筛选的预测变量的基于代谢组学的预测模型可以促进产量杂种优势的准确预测,并具有建立基于分子标记的精准育种计划的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c09/6918511/30bb113473b7/LSA-2019-00551_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验