Suppr超能文献

因果机制的插值:所知更多的悖论。

Interpolating causal mechanisms: The paradox of knowing more.

机构信息

Department of Psychology, University of Gottingen.

Center for Mind and Brain Sciences (CIMeC), University of Trento.

出版信息

J Exp Psychol Gen. 2021 Aug;150(8):1500-1527. doi: 10.1037/xge0001016. Epub 2021 Feb 1.

Abstract

Causal knowledge is not static; it is constantly modified based on new evidence. The present set of seven experiments explores 1 important case of causal belief revision that has been neglected in research so far: causal interpolations. A simple prototypic case of an interpolation is a situation in which we initially have knowledge about a causal relation or a positive covariation between 2 variables but later become interested in the mechanism linking these 2 variables. Our key finding is that the interpolation of mechanism variables tends to be misrepresented, which leads to the paradox of knowing more: The more people know about a mechanism, the weaker they tend to find the probabilistic relation between the 2 variables (i.e., weakening effect). Indeed, in all our experiments we found that, despite identical learning data about 2 variables, the probability linking the 2 variables was judged higher when follow-up research showed that the 2 variables were assumed to be directly causally linked (i.e., C→E) than when participants were instructed that the causal relation is in fact mediated by a variable representing a component of the mechanism (M; i.e., C→M→E). Our explanation of the weakening effect is that people often confuse discoveries of preexisting but unknown mechanisms with situations in which new variables are being added to a previously simpler causal model, thus violating causal stability assumptions in natural kind domains. The experiments test several implications of this hypothesis. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

摘要

因果知识不是静态的;它会根据新的证据不断修改。目前这七项实验探索了一个重要的因果信念修正案例,迄今为止,该案例在研究中一直被忽视:因果推断。一个简单的因果推断原型案例是这样一种情况:我们最初对因果关系或两个变量之间的正协变有一定的了解,但后来对连接这两个变量的机制感兴趣。我们的主要发现是,机制变量的推断往往会被错误表示,这导致了知道更多的悖论:人们对一个机制了解得越多,他们就越倾向于认为两个变量之间的概率关系越弱(即弱化效应)。事实上,在我们所有的实验中,我们发现,尽管关于两个变量的学习数据相同,但当后续研究表明两个变量被假设为直接因果关系(即 C→E)时,两个变量之间的链接概率被判断得更高,而当参与者被指示因果关系实际上是由代表机制组成部分的变量(即 M;即 C→M→E)介导时。我们对弱化效应的解释是,人们经常将对预先存在但未知机制的发现与在先前更简单的因果模型中添加新变量的情况混淆,从而违反了自然类别领域中的因果稳定性假设。这些实验检验了这一假设的几个含义。(PsycInfo 数据库记录(c)2021 APA,保留所有权利)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验