Suppr超能文献

用于超声图像伪像去除的无监督深度学习变分公式化

Variational Formulation of Unsupervised Deep Learning for Ultrasound Image Artifact Removal.

作者信息

Khan Shujaat, Huh Jaeyoung, Ye Jong Chul

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jun;68(6):2086-2100. doi: 10.1109/TUFFC.2021.3056197. Epub 2021 May 25.

Abstract

Recently, deep learning approaches have been successfully used for ultrasound (US) image artifact removal. However, paired high-quality images for supervised training are difficult to obtain in many practical situations. Inspired by the recent theory of unsupervised learning using optimal transport driven CycleGAN (OT-CycleGAN), here, we investigate the applicability of unsupervised deep learning for US artifact removal problems without matched reference data. Two types of OT-CycleGAN approaches are employed: one with the partial knowledge of the image degradation physics and the other with the lack of such knowledge. Various US artifact removal problems are then addressed using the two types of OT-CycleGAN. Experimental results for various unsupervised US artifact removal tasks confirmed that our unsupervised learning method delivers results comparable to supervised learning in many practical applications.

摘要

最近,深度学习方法已成功用于超声(US)图像伪像去除。然而,在许多实际情况下,难以获得用于监督训练的配对高质量图像。受最近使用最优传输驱动的循环生成对抗网络(OT-CycleGAN)进行无监督学习理论的启发,在此,我们研究无监督深度学习在没有匹配参考数据的情况下用于超声伪像去除问题的适用性。采用了两种类型的OT-CycleGAN方法:一种具有图像退化物理的部分知识,另一种缺乏此类知识。然后使用这两种类型的OT-CycleGAN解决各种超声伪像去除问题。各种无监督超声伪像去除任务的实验结果证实,我们的无监督学习方法在许多实际应用中能产生与监督学习相当的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验