Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, Texas, 75239, USA.
Med Phys. 2021 May;48(5):2258-2270. doi: 10.1002/mp.14796. Epub 2021 Mar 17.
Despite the indispensable role of x-ray computed tomography (CT) in diagnostic medicine, the associated harmful ionizing radiation dose is a major concern, as it may cause genetic diseases and cancer. Decreasing patients' exposure can reduce the radiation dose and hence the related risks, but it would inevitably induce higher quantum noise. Supervised deep learning techniques have been used to train deep neural networks for denoising low-dose CT (LDCT) images, but the success of such strategies requires massive sets of pixel-level paired LDCT and normal-dose CT (NDCT) images, which are rarely available in real clinical practice. Our purpose is to mitigate the data scarcity problem for deep learning-based LDCT denoising.
To solve this problem, we devised a shift-invariant property-based neural network that uses only the LDCT images to characterize both the inherent pixel correlations and the noise distribution, shaping into our probabilistic self-learning (PSL) framework. The AAPM Low-dose CT Challenge dataset was used to train the network. Both simulated datasets and real dataset were employed to test the denoising performance as well as the model generalizability. The performance was compared to a conventional method (total variation (TV)-based), a popular self-learning method (noise2void (N2V)), and a well-known unsupervised learning method (CycleGAN) by using both qualitative visual inspection and quantitative metrics including peak signal-noise-ratio (PSNR), structural similarity index (SSIM) and contrast-to-noise-ratio (CNR). The standard deviations (STD) of selected flat regions were also calculated for comparison.
The PSL method can improve the averaged PSNR/SSIM values from 27.61/0.5939 (LDCT) to 30.50/0.6797. By contrast, the averaged PSNR/SSIM values were 31.49/0.7284 (TV), 29.43/0.6699 (N2V), and 29.79/0.6992 (CycleGAN). The averaged STDs of selected flat regions were calculated to be 132.3 HU (LDCT), 25.77 HU (TV), 19.95 HU (N2V), 75.06 HU (CycleGAN), 60.62 HU (PSL) and 57.28 HU (NDCT). As for the low-contrast lesion detectability quantification, the CNR were calculated to be 0.202 (LDCT), 0.356 (TV), 0.372 (N2V), 0.383 (CycleGAN), 0.399 (PSL), and 0.359 (NDCT). By visual inspection, we observed that the proposed PSL method can deliver a noise-suppressed and detail-preserved image, while the TV-based method would lead to the blocky artifact, the N2V method would produce over-smoothed structures and CT value biased effect, and the CycleGAN method would generate slightly noisy results with inaccurate CT values. We also verified the generalizability of the PSL method, which exhibited superior denoising performance among various testing datasets with different data distribution shifts.
A deep learning-based convolutional neural network can be trained without paired datasets. Qualitatively visual inspection showed the proposed PSL method can achieve superior denoising performance than all the competitors, despite that the employed quantitative metrics in terms of PSNR, SSIM and CNR did not always show consistently better values.
尽管 X 射线计算机断层扫描(CT)在诊断医学中具有不可或缺的作用,但相关的有害电离辐射剂量是一个主要关注点,因为它可能导致遗传疾病和癌症。减少患者的辐射剂量可以降低辐射剂量和相关风险,但这不可避免地会导致更高的量子噪声。监督深度学习技术已被用于训练深度神经网络进行低剂量 CT(LDCT)图像去噪,但这些策略的成功需要大量像素级配对的 LDCT 和标准剂量 CT(NDCT)图像,而在实际临床实践中很少有这种图像。我们的目的是减轻基于深度学习的 LDCT 去噪中的数据匮乏问题。
为了解决这个问题,我们设计了一个具有平移不变特性的神经网络,该网络仅使用 LDCT 图像来描述固有像素相关性和噪声分布,形成我们的概率自学习(PSL)框架。AAPM 低剂量 CT 挑战赛数据集用于训练网络。使用模拟数据集和真实数据集来测试去噪性能和模型泛化能力。通过使用定性视觉检查和包括峰值信噪比(PSNR)、结构相似性指数(SSIM)和对比噪声比(CNR)在内的定量指标,以及选择的平坦区域的标准偏差(STD)的计算进行比较。
PSL 方法可以将平均 PSNR/SSIM 值从 27.61/0.5939(LDCT)提高到 30.50/0.6797。相比之下,平均 PSNR/SSIM 值分别为 31.49/0.7284(TV)、29.43/0.6699(N2V)和 29.79/0.6992(CycleGAN)。计算所选平坦区域的平均 STD 为 132.3 HU(LDCT)、25.77 HU(TV)、19.95 HU(N2V)、75.06 HU(CycleGAN)、60.62 HU(PSL)和 57.28 HU(NDCT)。对于低对比度病变检测能力的量化,计算 CNR 为 0.202(LDCT)、0.356(TV)、0.372(N2V)、0.383(CycleGAN)、0.399(PSL)和 0.359(NDCT)。通过视觉检查,我们观察到,所提出的 PSL 方法可以提供噪声抑制和细节保留的图像,而基于 TV 的方法会导致块状伪影,N2V 方法会产生过度平滑的结构和 CT 值偏差效应,CycleGAN 方法会产生稍微嘈杂的结果,CT 值不准确。我们还验证了 PSL 方法的通用性,该方法在具有不同数据分布偏移的各种测试数据集中表现出了优越的去噪性能。
可以在没有配对数据集的情况下训练基于深度学习的卷积神经网络。定性视觉检查表明,所提出的 PSL 方法可以比所有竞争对手实现更好的去噪性能,尽管在 PSNR、SSIM 和 CNR 等方面的定量指标并不总是显示出一致的更好值。