Suppr超能文献

评估真实与想象抓握时运动前区的有效连接:DCM-PEB 方法。

Assessing the effective connectivity of premotor areas during real vs imagined grasping: a DCM-PEB approach.

机构信息

Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.

Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.

出版信息

Neuroimage. 2021 Apr 15;230:117806. doi: 10.1016/j.neuroimage.2021.117806. Epub 2021 Jan 29.

Abstract

The parieto-frontal circuit underlying grasping, which requires the serial involvement of the anterior intraparietal area (aIPs) and the ventral premotor cortex (PMv), has been recently extended enlightening the role of the dorsal premotor cortex (PMd). The supplementary motor area (SMA) has been also suggested to encode grip force for grasping actions; furthermore, both PMd and SMA are known to play a crucial role in motor imagery. Here, we aimed at assessing the dynamic couplings between left aIPs, PMv, PMd, SMA and primary motor cortex (M1) by comparing executed and imagined right-hand grasping, using Dynamic Causal Modelling (DCM) and Parametrical Empirical Bayes (PEB) analyses. 24 subjects underwent an fMRI exam (3T) during which they were asked to perform or imagine a grasping movement visually cued by photographs of commonly used objects. We tested whether the two conditions a) exert a modulatory effect on both forward and feedback couplings among our areas of interest, and b) differ in terms of strength and sign of these parameters. Results of the real condition confirmed the serial involvement of aIPs, PMv and M1. PMv also exerted a positive influence on PMd and SMA, but received an inhibitory feedback only from PMd. Our results suggest that a general motor program for grasping is planned by the aIPs-PMv circuit; then, PMd and SMA encode high-level features of the movement. During imagery, the connection strength from aIPs to PMv was weaker and the information flow stopped in PMv; thus, a less complex motor program was planned. Moreover, results suggest that SMA and PMd cooperate to prevent motor execution. In conclusion, the comparison between execution and imagery reveals that during grasping premotor areas dynamically interplay in different ways, depending on task demands.

摘要

负责抓握的顶额回路,需要前内顶叶区(aIPs)和腹侧运动前皮质(PMv)的连续参与,最近已经扩展了对背侧运动前皮质(PMd)的作用的认识。补充运动区(SMA)也被认为用于编码抓握动作的握力;此外,PMd 和 SMA 都已知在运动想象中发挥关键作用。在这里,我们旨在通过使用动态因果建模(DCM)和参数经验贝叶斯(PEB)分析,比较执行和想象右手抓握,来评估左 aIPs、PMv、PMd、SMA 和初级运动皮质(M1)之间的动态耦合。24 名受试者接受了 fMRI 检查(3T),在此期间,他们被要求在视觉上通过常用物体的照片提示执行或想象抓握动作。我们测试了两种情况:a)是否对我们感兴趣的区域之间的前向和反馈耦合施加调制效应,以及 b)这些参数的强度和符号是否不同。实际条件的结果证实了 aIPs、PMv 和 M1 的顺序参与。PMv 还对 PMd 和 SMA 施加了积极的影响,但仅从 PMd 接收到抑制性反馈。我们的结果表明,抓握的一般运动计划由 aIPs-PMv 回路制定;然后,PMd 和 SMA 对运动的高级特征进行编码。在想象中,aIPs 到 PMv 的连接强度较弱,信息流在 PMv 中停止;因此,制定了一个不太复杂的运动计划。此外,结果表明 SMA 和 PMd 合作以防止运动执行。总之,执行和想象之间的比较表明,在抓握过程中,运动前区根据任务需求以不同的方式动态相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验