Suppr超能文献

仿生导电大豆蛋白膜的表征

Characterization of Bio-Inspired Electro-Conductive Soy Protein Films.

作者信息

Guerrero Pedro, Garrido Tania, Garcia-Orue Itxaso, Santos-Vizcaino Edorta, Igartua Manoli, Hernandez Rosa Maria, de la Caba Koro

机构信息

BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.

BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.

出版信息

Polymers (Basel). 2021 Jan 28;13(3):416. doi: 10.3390/polym13030416.

Abstract

Protein-based conductive materials are gaining attention as alternative components of electronic devices for value-added applications. In this regard, soy protein isolate (SPI) was processed by extrusion in order to obtain SPI pellets, subsequently molded into SPI films by hot pressing, resulting in homogeneous and transparent films, as shown by scanning electron microscopy and UV-vis spectroscopy analyses, respectively. During processing, SPI denatured and refolded through intermolecular interactions with glycerol, causing a major exposition of tryptophan residues and fluorescence emission, affecting charge distribution and electron transport properties. Regarding electrical conductivity, the value found (9.889 × 10 S/m) is characteristic of electrical semiconductors, such as silicon, and higher than that found for other natural polymers. Additionally, the behavior of the films in contact with water was analyzed, indicating a controlled swelling and a hydrolytic surface, which is of great relevance for cell adhesion and spreading. In fact, cytotoxicity studies showed that the developed SPI films were biocompatible, according to the guidelines for the biological evaluation of medical devices. Therefore, these SPI films are uniquely suited as bioelectronics because they conduct both ionic and electronic currents, which is not accessible for the traditional metallic conductors.

摘要

基于蛋白质的导电材料作为具有增值应用的电子设备的替代组件正受到关注。在这方面,大豆分离蛋白(SPI)通过挤压加工以获得SPI颗粒,随后通过热压成型为SPI薄膜,扫描电子显微镜和紫外可见光谱分析分别表明得到了均匀且透明的薄膜。在加工过程中,SPI通过与甘油的分子间相互作用发生变性和重折叠,导致色氨酸残基大量暴露并产生荧光发射,影响电荷分布和电子传输特性。关于电导率,所测得的值(9.889×10 S/m)是半导体(如硅)的特征值,且高于其他天然聚合物的电导率。此外,还分析了薄膜与水接触时的行为,表明其具有可控的溶胀和水解表面,这对于细胞粘附和铺展具有重要意义。事实上,细胞毒性研究表明,根据医疗器械生物学评价指南,所制备的SPI薄膜具有生物相容性。因此,这些SPI薄膜特别适合用作生物电子学材料,因为它们既能传导离子电流又能传导电子电流,这是传统金属导体所无法实现的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c4b/7866128/9aaefb395fe1/polymers-13-00416-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验