Suppr超能文献

带平衡约束的倾向评分分析方法:一项蒙特卡罗研究。

Propensity score analysis methods with balancing constraints: A Monte Carlo study.

机构信息

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.

Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Stat Methods Med Res. 2021 Apr;30(4):1119-1142. doi: 10.1177/0962280220983512. Epub 2021 Feb 1.

Abstract

The inverse probability weighting is an important propensity score weighting method to estimate the average treatment effect. Recent literature shows that it can be easily combined with covariate balancing constraints to reduce the detrimental effects of excessively large weights and improve balance. Other methods are available to derive weights that balance covariate distributions between the treatment groups without the involvement of propensity scores. We conducted comprehensive Monte Carlo experiments to study whether the use of covariate balancing constraints circumvent the need for correct propensity score model specification, and whether the use of a propensity score model further improves the estimation performance among methods that use similar covariate balancing constraints. We compared simple inverse probability weighting, two propensity score weighting methods with balancing constraints (covariate balancing propensity score, covariate balancing scoring rule), and two weighting methods with balancing constraints but without using the propensity scores (entropy balancing and kernel balancing). We observed that correct specification of the propensity score model remains important even when the constraints effectively balance the covariates. We also observed evidence suggesting that, with similar covariate balance constraints, the use of a propensity score model improves the estimation performance when the dimension of covariates is large. These findings suggest that it is important to develop flexible data-driven propensity score models that satisfy covariate balancing conditions.

摘要

逆概率加权是一种重要的倾向评分加权方法,用于估计平均治疗效果。最近的文献表明,它可以很容易地与协变量平衡约束结合使用,以减少过大权重的不利影响,并改善平衡。还有其他方法可用于在不涉及倾向评分的情况下,在治疗组之间平衡协变量分布的权重。我们进行了全面的蒙特卡罗实验,以研究使用协变量平衡约束是否可以避免正确的倾向评分模型规范的需要,以及在使用类似协变量平衡约束的方法中,使用倾向评分模型是否可以进一步提高估计性能。我们比较了简单的逆概率加权、两种具有平衡约束的倾向评分加权方法(协变量平衡倾向评分、协变量平衡评分规则),以及两种具有平衡约束但不使用倾向评分的加权方法(熵平衡和核平衡)。我们观察到,即使约束有效地平衡了协变量,正确指定倾向评分模型仍然很重要。我们还观察到一些证据表明,在具有相似协变量平衡约束的情况下,当协变量的维度较大时,使用倾向评分模型可以提高估计性能。这些发现表明,开发满足协变量平衡条件的灵活数据驱动倾向评分模型非常重要。

相似文献

1
Propensity score analysis methods with balancing constraints: A Monte Carlo study.
Stat Methods Med Res. 2021 Apr;30(4):1119-1142. doi: 10.1177/0962280220983512. Epub 2021 Feb 1.
2
Balancing vs modeling approaches to weighting in practice.
Stat Med. 2020 Oct 30;39(24):3227-3254. doi: 10.1002/sim.8659. Epub 2020 Sep 3.
3
Subgroup balancing propensity score.
Stat Methods Med Res. 2020 Mar;29(3):659-676. doi: 10.1177/0962280219870836. Epub 2019 Aug 28.
5
Propensity score analysis with local balance.
Stat Med. 2023 Jul 10;42(15):2637-2660. doi: 10.1002/sim.9741. Epub 2023 Apr 3.
9
Balancing versus modelling in weighted analysis of non-randomised studies with survival outcomes: A simulation study.
Stat Med. 2024 Jul 30;43(17):3140-3163. doi: 10.1002/sim.10110. Epub 2024 May 27.
10
Propensity score weighting analysis and treatment effect discovery.
Stat Methods Med Res. 2019 Aug;28(8):2439-2454. doi: 10.1177/0962280218781171. Epub 2018 Jun 19.

引用本文的文献

1
Statistical methods for assessing treatment effects on ordinal outcomes using observational data.
Commun Stat Simul Comput. 2025 Apr 14. doi: 10.1080/03610918.2025.2488945.
4
Impact of long-term N-acetylcysteine use on cancer risk.
Am J Cancer Res. 2025 Feb 15;15(2):618-630. doi: 10.62347/VCDJ1296. eCollection 2025.
5
Robust propensity score estimation via loss function calibration.
Stat Methods Med Res. 2025 Mar;34(3):457-472. doi: 10.1177/09622802241308709. Epub 2025 Feb 12.
7
Adapted diabetes complications severity index predicts dementia risk in ageing type 2 diabetes mellitus patients.
Brain Commun. 2024 Mar 22;6(2):fcae079. doi: 10.1093/braincomms/fcae079. eCollection 2024.
9
Propensity score analysis with local balance.
Stat Med. 2023 Jul 10;42(15):2637-2660. doi: 10.1002/sim.9741. Epub 2023 Apr 3.

本文引用的文献

1
Propensity score weighting analysis and treatment effect discovery.
Stat Methods Med Res. 2019 Aug;28(8):2439-2454. doi: 10.1177/0962280218781171. Epub 2018 Jun 19.
2
Kernel-based covariate functional balancing for observational studies.
Biometrika. 2018 Mar;105(1):199-213. doi: 10.1093/biomet/asx069. Epub 2017 Dec 8.
3
On the necessity and design of studies comparing statistical methods.
Biom J. 2018 Jan;60(1):216-218. doi: 10.1002/bimj.201700129. Epub 2017 Nov 29.
4
Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting.
J R Stat Soc Series B Stat Methodol. 2016 Jun;78(3):673-700. doi: 10.1111/rssb.12129. Epub 2015 Nov 8.
5
On regression adjustment for the propensity score.
Stat Med. 2014 Oct 15;33(23):4053-72. doi: 10.1002/sim.6207. Epub 2014 May 14.
6
The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: A simulation study.
Stat Methods Med Res. 2016 Oct;25(5):2214-2237. doi: 10.1177/0962280213519716. Epub 2014 Jan 23.
7
A weighting analogue to pair matching in propensity score analysis.
Int J Biostat. 2013 Jul 31;9(2):215-34. doi: 10.1515/ijb-2012-0030.
8
Weight trimming and propensity score weighting.
PLoS One. 2011 Mar 31;6(3):e18174. doi: 10.1371/journal.pone.0018174.
9
Matching methods for causal inference: A review and a look forward.
Stat Sci. 2010 Feb 1;25(1):1-21. doi: 10.1214/09-STS313.
10
Weighting regressions by propensity scores.
Eval Rev. 2008 Aug;32(4):392-409. doi: 10.1177/0193841X08317586.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验