Suppr超能文献

通过损失函数校准进行稳健的倾向得分估计。

Robust propensity score estimation via loss function calibration.

作者信息

Shang Yimeng, Chiu Yu-Han, Kong Lan

机构信息

Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA.

出版信息

Stat Methods Med Res. 2025 Mar;34(3):457-472. doi: 10.1177/09622802241308709. Epub 2025 Feb 12.

Abstract

Propensity score estimation is often used as a preliminary step to estimate the average treatment effect with observational data. Nevertheless, misspecification of propensity score models undermines the validity of effect estimates in subsequent analyses. Prediction-based machine learning algorithms are increasingly used to estimate propensity scores to allow for more complex relationships between covariates. However, these approaches may not necessarily achieve covariates balancing. We propose a calibration-based method to better incorporate covariate balance properties in a general modeling framework. Specifically, we calibrate the loss function by adding a covariate imbalance penalty to standard parametric (e.g. logistic regressions) or machine learning models (e.g. neural networks). Our approach may mitigate the impact of model misspecification by explicitly taking into account the covariate balance in the propensity score estimation process. The empirical results show that the proposed method is robust to propensity score model misspecification. The integration of loss function calibration improves the balance of covariates and reduces the root-mean-square error of causal effect estimates. When the propensity score model is misspecified, the neural-network-based model yields the best estimator with less bias and smaller variance as compared to other methods considered.

摘要

倾向得分估计通常被用作利用观测数据估计平均治疗效果的初步步骤。然而,倾向得分模型的错误设定会破坏后续分析中效果估计的有效性。基于预测的机器学习算法越来越多地用于估计倾向得分,以考虑协变量之间更复杂的关系。然而,这些方法不一定能实现协变量平衡。我们提出一种基于校准的方法,以便在通用建模框架中更好地纳入协变量平衡特性。具体而言,我们通过向标准参数模型(如逻辑回归)或机器学习模型(如神经网络)添加协变量不平衡惩罚来校准损失函数。我们的方法可以通过在倾向得分估计过程中明确考虑协变量平衡来减轻模型错误设定的影响。实证结果表明,所提出的方法对倾向得分模型的错误设定具有鲁棒性。损失函数校准的整合改善了协变量的平衡,并降低了因果效应估计的均方根误差。当倾向得分模型被错误设定时,与其他考虑的方法相比,基于神经网络的模型产生的估计量偏差更小、方差更小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0ad/11951360/8d49b06dbc82/10.1177_09622802241308709-fig1.jpg

相似文献

1
Robust propensity score estimation via loss function calibration.
Stat Methods Med Res. 2025 Mar;34(3):457-472. doi: 10.1177/09622802241308709. Epub 2025 Feb 12.
2
Prognostic score-based model averaging approach for propensity score estimation.
BMC Med Res Methodol. 2024 Oct 3;24(1):228. doi: 10.1186/s12874-024-02350-y.
3
Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation.
Stat Med. 2012 Jul 10;31(15):1572-81. doi: 10.1002/sim.4496. Epub 2012 Feb 23.
4
Estimation of average treatment effect based on a multi-index propensity score.
BMC Med Res Methodol. 2022 Dec 28;22(1):337. doi: 10.1186/s12874-022-01822-3.
6
Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.
Int J Biostat. 2019 Feb 26;15(2):/j/ijb.2019.15.issue-2/ijb-2017-0054/ijb-2017-0054.xml. doi: 10.1515/ijb-2017-0054.
7
Machine learning outcome regression improves doubly robust estimation of average causal effects.
Pharmacoepidemiol Drug Saf. 2020 Sep;29(9):1120-1133. doi: 10.1002/pds.5074. Epub 2020 Jul 27.
8
Propensity score analysis with local balance.
Stat Med. 2023 Jul 10;42(15):2637-2660. doi: 10.1002/sim.9741. Epub 2023 Apr 3.
9
A comparison of machine learning algorithms and covariate balance measures for propensity score matching and weighting.
Biom J. 2019 Jul;61(4):1049-1072. doi: 10.1002/bimj.201800132. Epub 2019 May 14.

本文引用的文献

1
Propensity score analysis with local balance.
Stat Med. 2023 Jul 10;42(15):2637-2660. doi: 10.1002/sim.9741. Epub 2023 Apr 3.
2
Ultra-high dimensional variable selection for doubly robust causal inference.
Biometrics. 2023 Jun;79(2):903-914. doi: 10.1111/biom.13625. Epub 2022 Mar 22.
3
An introduction to inverse probability of treatment weighting in observational research.
Clin Kidney J. 2021 Aug 26;15(1):14-20. doi: 10.1093/ckj/sfab158. eCollection 2022 Jan.
4
Propensity score weighting for causal subgroup analysis.
Stat Med. 2021 Aug 30;40(19):4294-4309. doi: 10.1002/sim.9029. Epub 2021 May 12.
5
Propensity score analysis methods with balancing constraints: A Monte Carlo study.
Stat Methods Med Res. 2021 Apr;30(4):1119-1142. doi: 10.1177/0962280220983512. Epub 2021 Feb 1.
6
Propensity score adjustment using machine learning classification algorithms to control selection bias in online surveys.
PLoS One. 2020 Apr 22;15(4):e0231500. doi: 10.1371/journal.pone.0231500. eCollection 2020.
7
A comparison of machine learning algorithms and covariate balance measures for propensity score matching and weighting.
Biom J. 2019 Jul;61(4):1049-1072. doi: 10.1002/bimj.201800132. Epub 2019 May 14.
8
Balance diagnostics after propensity score matching.
Ann Transl Med. 2019 Jan;7(1):16. doi: 10.21037/atm.2018.12.10.
9
Using simulation studies to evaluate statistical methods.
Stat Med. 2019 May 20;38(11):2074-2102. doi: 10.1002/sim.8086. Epub 2019 Jan 16.
10
Chasing balance and other recommendations for improving nonparametric propensity score models.
J Causal Inference. 2017;5(2). doi: 10.1515/jci-2015-0026. Epub 2017 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验