Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, USA.
Pacing Clin Electrophysiol. 2021 Mar;44(3):432-441. doi: 10.1111/pace.14181. Epub 2021 Feb 12.
We recently developed two noninvasive methodologies to help guide VT ablation: population-derived automated VT exit localization (PAVEL) and virtual-heart arrhythmia ablation targeting (VAAT). We hypothesized that while very different in their nature, limitations, and type of ablation targets (substrate-based vs. clinical VT), the image-based VAAT and the ECG-based PAVEL technologies would be spatially concordant in their predictions.
The objective is to test this hypothesis in ischemic cardiomyopathy patients in a retrospective feasibility study.
Four post-infarct patients who underwent LV VT ablation and had pre-procedural LGE-CMRs were enrolled. Virtual hearts with patient-specific scar and border zone identified potential VTs and ablation targets. Patient-specific PAVEL based on a population-derived statistical method localized VT exit sites onto a patient-specific 238-triangle LV endocardial surface.
Ten induced VTs were analyzed and 9-exit sites were localized by PAVEL onto the patient-specific LV endocardial surface. All nine predicted VT exit sites were in the scar border zone defined by voltage mapping and spatially correlated with successful clinical lesions. There were 2.3 ± 1.9 VTs per patient in the models. All five VAAT lesions fell within regions ablated clinically. VAAT targets correlated well with 6 PAVEL-predicted VT exit sites. The distance between the center of the predicted VT-exit-site triangle and nearest corresponding VAAT ablation lesion was 10.7 ± 7.3 mm.
VAAT targets are concordant with the patient-specific PAVEL-predicted VT exit sites. These findings support investigation into combining these two complementary technologies as a noninvasive, clinical tool for targeting clinically induced VTs and regions likely to harbor potential VTs.
我们最近开发了两种非侵入性方法来帮助指导 VT 消融:基于人群的自动 VT 出口定位(PAVEL)和虚拟心脏心律失常消融靶向(VAAT)。我们假设,虽然在本质、局限性和消融靶点类型(基于基质与临床 VT)上存在很大差异,但基于图像的 VAAT 和基于心电图的 PAVEL 技术在预测方面具有空间一致性。
本研究旨在通过回顾性可行性研究在缺血性心肌病患者中检验这一假设。
纳入了 4 名接受 LV VT 消融且具有术前 LGE-CMR 的梗死后患者。具有患者特异性疤痕和边界区的虚拟心脏可预测潜在 VT 和消融靶点。基于人群衍生的统计方法的患者特异性 PAVEL 将 VT 出口部位定位到患者特异性的 238 个三角形 LV 心内膜表面。
分析了 10 次诱发的 VT,并通过 PAVEL 将 9 个出口部位定位到患者特异性的 LV 心内膜表面。所有 9 个预测的 VT 出口部位均位于电压映射定义的疤痕边界区,与成功的临床病变具有空间相关性。模型中每个患者有 2.3 ± 1.9 个 VT。所有 5 个 VAAT 病变均位于临床消融区域内。VAAT 靶点与 6 个 PAVEL 预测的 VT 出口部位相关性良好。预测的 VT 出口部位三角形的中心与最近的相应 VAAT 消融病变之间的距离为 10.7 ± 7.3 毫米。
VAAT 靶点与患者特异性的 PAVEL 预测的 VT 出口部位一致。这些发现支持将这两种互补技术结合作为一种非侵入性、临床工具,用于靶向临床诱导的 VT 和可能存在潜在 VT 的区域。