Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.
Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China.
Angew Chem Int Ed Engl. 2021 Apr 12;60(16):8905-8912. doi: 10.1002/anie.202100864. Epub 2021 Mar 9.
The local electron density of an atom is one key factor that determines its chemical properties. Regulating electron density can promote the atom's reactivity and so reduce the reaction activation energy, which is highly desired in many chemical applications. Herein, we report an intra-crystalline electron lever strategy, which can regulate the electron density of reaction centre atoms via manipulating ambient lattice states, for Fenton activity improvement. Typically, with the assistance of ultrasound, the Mn -O-Fe bond in BiFe Mn O perovskite nanocrystals can drive valence electrons and free electrons to accumulate on Fe atoms by a polarization electric field originated from the designed lattice strain. The increase of electron density significantly improves the catalytic activity of Fe, decreasing the activation energy of BiFe Mn O -mediated Fenton reaction by 52.55 %, and increasing the OH yield by 9.21-fold. This study provides a new way to understand the sono-Fenton chemistry, and the increased OH production enables a highly effective chemodynamic therapy.
原子的局部电子密度是决定其化学性质的关键因素之一。调节电子密度可以提高原子的反应活性,从而降低反应的活化能,这在许多化学应用中是非常需要的。在此,我们报告了一种晶内电子水平策略,通过操纵环境晶格态来调节反应中心原子的电子密度,以提高 Fenton 活性。通常,在超声的辅助下,BiFeMnO 钙钛矿纳米晶体中的 Mn-O-Fe 键可以通过源自设计晶格应变的极化电场将价电子和自由电子驱动到 Fe 原子上。电子密度的增加显著提高了 Fe 的催化活性,使 BiFeMnO 介导的芬顿反应的活化能降低了 52.55%,同时将 OH 的产率提高了 9.21 倍。本研究为理解声芬顿化学提供了一种新方法,增加的 OH 生成使高效的化学动力学治疗成为可能。