Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.
Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.
Plant Cell Environ. 2021 Jun;44(6):1961-1976. doi: 10.1111/pce.14014. Epub 2021 Feb 16.
Plants host a diverse microbiome and differentially react to the fungal species living as endophytes or around their roots through emission of volatiles. Here, using divided Petri plates for Arabidopsis-T. atroviride co-cultivation, we show that fungal volatiles increase endogenous sugar levels in shoots, roots and root exudates, which improve Arabidopsis root growth and branching and strengthen the symbiosis. Tissue-specific expression of three sucrose phosphate synthase-encoding genes (AtSPS1F, AtSPS2F and AtSPS3F), and AtSUC2 and SWEET transporters revealed that the gene expression signatures differ from those of the fungal pathogens Fusarium oxysporum and Alternaria alternata and that AtSUC2 is largely repressed either by increasing carbon availability or by perception of the fungal volatile 6-pentyl-2H-pyran-2-one. Our data point to Trichoderma volatiles as chemical signatures for sugar biosynthesis and exudation and unveil specific modulation of a critical, long-distance sucrose transporter in the plant.
植物拥有多样化的微生物群落,并通过挥发物的排放对作为内生真菌或生活在其根部周围的真菌物种做出不同的反应。在这里,我们使用分开的培养皿进行拟南芥-塔宾曲霉共培养,结果表明真菌挥发物增加了地上部、根部和根渗出物中的内源性糖水平,从而促进了拟南芥的根生长和分枝,并增强了共生关系。三个蔗糖磷酸合酶编码基因(AtSPS1F、AtSPS2F 和 AtSPS3F)以及 AtSUC2 和 SWEET 转运蛋白的组织特异性表达表明,基因表达特征与真菌病原体尖孢镰刀菌和链格孢菌不同,AtSUC2 要么由于碳可用性的增加,要么由于对真菌挥发物 6-戊基-2H-吡喃-2-酮的感知而被大量抑制。我们的数据表明,木霉挥发物是糖生物合成和分泌的化学特征,并揭示了对植物中关键的长距离蔗糖转运蛋白的特异性调节。