Suppr超能文献

尿单细胞分析捕获肾脏的细胞多样性。

Urinary Single-Cell Profiling Captures the Cellular Diversity of the Kidney.

机构信息

Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania.

Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania.

出版信息

J Am Soc Nephrol. 2021 Mar;32(3):614-627. doi: 10.1681/ASN.2020050757. Epub 2021 Feb 2.

Abstract

BACKGROUND

Microscopic analysis of urine sediment is probably the most commonly used diagnostic procedure in nephrology. The urinary cells, however, have not yet undergone careful unbiased characterization.

METHODS

Single-cell transcriptomic analysis was performed on 17 urine samples obtained from five subjects at two different occasions, using both spot and 24-hour urine collection. A pooled urine sample from multiple healthy individuals served as a reference control. In total 23,082 cells were analyzed. Urinary cells were compared with human kidney and human bladder datasets to understand similarities and differences among the observed cell types.

RESULTS

Almost all kidney cell types can be identified in urine, such as podocyte, proximal tubule, loop of Henle, and collecting duct, in addition to macrophages, lymphocytes, and bladder cells. The urinary cell-type composition was subject specific and reasonably stable using different collection methods and over time. Urinary cells clustered with kidney and bladder cells, such as urinary podocytes with kidney podocytes, and principal cells of the kidney and urine, indicating their similarities in gene expression.

CONCLUSIONS

A reference dataset for cells in human urine was generated. Single-cell transcriptomics enables detection and quantification of almost all types of cells in the kidney and urinary tract.

摘要

背景

尿液沉淀物的显微镜分析可能是肾脏病学中最常用的诊断程序。然而,尿液细胞尚未经过仔细的无偏特征描述。

方法

对来自五个个体在两个不同时间点采集的 17 个尿液样本进行单细胞转录组分析,分别使用了单次尿液样本和 24 小时尿液收集。从多个健康个体中混合的尿液样本作为参考对照。总共分析了 23,082 个细胞。将尿液细胞与人类肾脏和膀胱数据集进行比较,以了解观察到的细胞类型之间的相似性和差异性。

结果

除了巨噬细胞、淋巴细胞和膀胱细胞外,几乎所有的肾脏细胞类型都可以在尿液中识别出来,如足细胞、近端肾小管、亨利氏袢和集合管。使用不同的收集方法和随时间推移,尿液细胞的类型组成具有个体特异性且相对稳定。尿液细胞与肾脏和膀胱细胞聚类,例如尿液足细胞与肾脏足细胞以及肾脏和尿液中的主细胞,表明它们在基因表达上具有相似性。

结论

生成了人类尿液中细胞的参考数据集。单细胞转录组学可用于检测和定量肾脏和泌尿道中的几乎所有类型的细胞。

相似文献

1
Urinary Single-Cell Profiling Captures the Cellular Diversity of the Kidney.尿单细胞分析捕获肾脏的细胞多样性。
J Am Soc Nephrol. 2021 Mar;32(3):614-627. doi: 10.1681/ASN.2020050757. Epub 2021 Feb 2.
6
Dipping your feet in the water: podocytes in urine.将双脚浸入水中:尿液中的足细胞。
Expert Rev Mol Diagn. 2014 May;14(4):423-37. doi: 10.1586/14737159.2014.908122. Epub 2014 Apr 11.
9
Urine podocyte mRNAs mark progression of renal disease.尿足细胞信使核糖核酸标志着肾脏疾病的进展。
J Am Soc Nephrol. 2009 May;20(5):1041-52. doi: 10.1681/ASN.2007121328. Epub 2009 Apr 23.

引用本文的文献

1
Advancements in the non-invasive diagnosis of renal fibrosis.肾纤维化的非侵入性诊断进展
Front Med (Lausanne). 2025 Jul 30;12:1646412. doi: 10.3389/fmed.2025.1646412. eCollection 2025.

本文引用的文献

7
The single-cell transcriptomic landscape of early human diabetic nephropathy.单细胞转录组图谱描绘人类早期糖尿病肾病。
Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19619-19625. doi: 10.1073/pnas.1908706116. Epub 2019 Sep 10.
8
Understanding the kidney one cell at a time.一次一个细胞了解肾脏。
Kidney Int. 2019 Oct;96(4):862-870. doi: 10.1016/j.kint.2019.03.035. Epub 2019 Jul 26.
9
Single-Cell Transcriptomic Map of the Human and Mouse Bladders.人类和小鼠膀胱的单细胞转录组图谱。
J Am Soc Nephrol. 2019 Nov;30(11):2159-2176. doi: 10.1681/ASN.2019040335. Epub 2019 Aug 28.
10
Comprehensive Integration of Single-Cell Data.单细胞数据的综合整合。
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验