Suppr超能文献

通过单细胞转录组分析进行高分辨率组织和细胞类型鉴定。

High resolution tissue and cell type identification via single cell transcriptomic profiling.

作者信息

Liu Muyi, Zheng Suilan, Li Hongmin, Budowle Bruce, Wang Le, Lou Zhaohuan, Ge Jianye

机构信息

Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States of America.

Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America.

出版信息

PLoS One. 2025 Mar 26;20(3):e0318151. doi: 10.1371/journal.pone.0318151. eCollection 2025.

Abstract

Tissue identification can be instrumental in reconstructing a crime scene but remains a challenging task in forensic investigations. Conventionally, identifying the presence of certain tissue from tissue mixture by predefined cell type markers in bulk fashion is challenging due to limitations in sensitivity and accuracy. In contrast, single-cell RNA sequencing (scRNA-Seq) is a promising technology that has the potential to enhance or even revolutionize tissue and cell type identification. In this study, we developed a high sensitive general purpose single cell annotation pipeline, scTissueID, to accurately evaluate the single cell profile quality and precisely determine the cell and tissue types based on scRNA profiles. By incorporating a crucial and unique reference cell quality differentiation phase of targeting only high confident cells as reference, scTissueID achieved better and consistent performance in determining cell and tissue types compared to 8 state-of-art single cell annotation pipelines and 6 widely adopted machine learning algorithms, as demonstrated through a large-scale and comprehensive comparison study using both forensic-relevant and Human Cell Atlas (HCA) data. We highlighted the significance of cell quality differentiation, a previously undervalued factor. Thus, this study offers a tool capable of accurately and efficiently identifying cell and tissue types, with broad applicability to forensic investigations and other biomedical research endeavors.

摘要

组织鉴定有助于重建犯罪现场,但在法医调查中仍然是一项具有挑战性的任务。传统上,通过预定义的细胞类型标记以批量方式从组织混合物中鉴定某些组织的存在具有挑战性,因为在灵敏度和准确性方面存在局限性。相比之下,单细胞RNA测序(scRNA-Seq)是一项很有前景的技术,有可能增强甚至彻底改变组织和细胞类型的鉴定。在本研究中,我们开发了一种高灵敏度通用单细胞注释流程scTissueID,以准确评估单细胞图谱质量,并根据scRNA图谱精确确定细胞和组织类型。通过纳入一个关键且独特的参考细胞质量区分阶段,即仅将高可信度细胞作为参考,与8种先进的单细胞注释流程和6种广泛采用的机器学习算法相比,scTissueID在确定细胞和组织类型方面表现出更好且一致的性能,这通过使用法医相关数据和人类细胞图谱(HCA)数据进行的大规模综合比较研究得到了证明。我们强调了细胞质量区分这一先前被低估因素的重要性。因此,本研究提供了一种能够准确高效地鉴定细胞和组织类型的工具,在法医调查和其他生物医学研究工作中具有广泛的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7288/11940611/ef60b4d696c6/pone.0318151.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验