Yao Qiuming, Ferragina Paolo, Reshef Yakir, Lettre Guillaume, Bauer Daniel E, Pinello Luca
Department of Pathology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
Bioinformatics. 2021 Aug 9;37(15):2103-2111. doi: 10.1093/bioinformatics/btab072.
Genome-wide association studies (GWASs) have identified thousands of common trait-associated genetic variants but interpretation of their function remains challenging. These genetic variants can overlap the binding sites of transcription factors (TFs) and therefore could alter gene expression. However, we currently lack a systematic understanding on how this mechanism contributes to phenotype.
We present Motif-Raptor, a TF-centric computational tool that integrates sequence-based predictive models, chromatin accessibility, gene expression datasets and GWAS summary statistics to systematically investigate how TF function is affected by genetic variants. Given trait-associated non-coding variants, Motif-Raptor can recover relevant cell types and critical TFs to drive hypotheses regarding their mechanism of action. We tested Motif-Raptor on complex traits such as rheumatoid arthritis and red blood cell count and demonstrated its ability to prioritize relevant cell types, potential regulatory TFs and non-coding SNPs which have been previously characterized and validated.
Motif-Raptor is freely available as a Python package at: https://github.com/pinellolab/MotifRaptor.
Supplementary data are available at Bioinformatics online.
全基因组关联研究(GWAS)已识别出数千种与常见性状相关的基因变异,但其功能解读仍具有挑战性。这些基因变异可能与转录因子(TF)的结合位点重叠,因此可能会改变基因表达。然而,目前我们对这种机制如何影响表型缺乏系统的认识。
我们展示了Motif-Raptor,这是一种以TF为中心的计算工具,它整合了基于序列的预测模型、染色质可及性、基因表达数据集和GWAS汇总统计数据,以系统地研究TF功能如何受到基因变异的影响。给定与性状相关的非编码变异,Motif-Raptor可以找出相关细胞类型和关键TF,从而推动关于其作用机制的假设。我们在类风湿性关节炎和红细胞计数等复杂性状上测试了Motif-Raptor,并证明了它能够对先前已表征和验证的相关细胞类型、潜在调控TF和非编码SNP进行优先级排序。
Motif-Raptor作为一个Python包可在以下网址免费获取:https://github.com/pinellolab/MotifRaptor。
补充数据可在《生物信息学》在线获取。