Suppr超能文献

Motif-Raptor:一种用于全基因组关联研究后因果调控因子优先级排序的细胞类型特异性且以转录因子为中心的方法。

Motif-Raptor: a cell type-specific and transcription factor centric approach for post-GWAS prioritization of causal regulators.

作者信息

Yao Qiuming, Ferragina Paolo, Reshef Yakir, Lettre Guillaume, Bauer Daniel E, Pinello Luca

机构信息

Department of Pathology, Massachusetts General Hospital, Charlestown, MA 02129, USA.

Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.

出版信息

Bioinformatics. 2021 Aug 9;37(15):2103-2111. doi: 10.1093/bioinformatics/btab072.

Abstract

MOTIVATION

Genome-wide association studies (GWASs) have identified thousands of common trait-associated genetic variants but interpretation of their function remains challenging. These genetic variants can overlap the binding sites of transcription factors (TFs) and therefore could alter gene expression. However, we currently lack a systematic understanding on how this mechanism contributes to phenotype.

RESULTS

We present Motif-Raptor, a TF-centric computational tool that integrates sequence-based predictive models, chromatin accessibility, gene expression datasets and GWAS summary statistics to systematically investigate how TF function is affected by genetic variants. Given trait-associated non-coding variants, Motif-Raptor can recover relevant cell types and critical TFs to drive hypotheses regarding their mechanism of action. We tested Motif-Raptor on complex traits such as rheumatoid arthritis and red blood cell count and demonstrated its ability to prioritize relevant cell types, potential regulatory TFs and non-coding SNPs which have been previously characterized and validated.

AVAILABILITY AND IMPLEMENTATION

Motif-Raptor is freely available as a Python package at: https://github.com/pinellolab/MotifRaptor.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

全基因组关联研究(GWAS)已识别出数千种与常见性状相关的基因变异,但其功能解读仍具有挑战性。这些基因变异可能与转录因子(TF)的结合位点重叠,因此可能会改变基因表达。然而,目前我们对这种机制如何影响表型缺乏系统的认识。

结果

我们展示了Motif-Raptor,这是一种以TF为中心的计算工具,它整合了基于序列的预测模型、染色质可及性、基因表达数据集和GWAS汇总统计数据,以系统地研究TF功能如何受到基因变异的影响。给定与性状相关的非编码变异,Motif-Raptor可以找出相关细胞类型和关键TF,从而推动关于其作用机制的假设。我们在类风湿性关节炎和红细胞计数等复杂性状上测试了Motif-Raptor,并证明了它能够对先前已表征和验证的相关细胞类型、潜在调控TF和非编码SNP进行优先级排序。

可用性和实现方式

Motif-Raptor作为一个Python包可在以下网址免费获取:https://github.com/pinellolab/MotifRaptor。

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

2
Identification of breast cancer associated variants that modulate transcription factor binding.
PLoS Genet. 2017 Sep 28;13(9):e1006761. doi: 10.1371/journal.pgen.1006761. eCollection 2017 Sep.
4
MAGGIE: leveraging genetic variation to identify DNA sequence motifs mediating transcription factor binding and function.
Bioinformatics. 2020 Jul 1;36(Suppl_1):i84-i92. doi: 10.1093/bioinformatics/btaa476.
5
Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
Bioinformatics. 2019 Jul 1;35(13):2251-2257. doi: 10.1093/bioinformatics/bty961.
6
Improved linking of motifs to their TFs using domain information.
Bioinformatics. 2020 Mar 1;36(6):1655-1662. doi: 10.1093/bioinformatics/btz855.
7
CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-wide association studies.
Bioinformatics. 2020 Apr 1;36(7):2009-2016. doi: 10.1093/bioinformatics/btz880.
8
Application of topic models to a compendium of ChIP-Seq datasets uncovers recurrent transcriptional regulatory modules.
Bioinformatics. 2020 Apr 15;36(8):2352-2358. doi: 10.1093/bioinformatics/btz975.
10
SparkINFERNO: a scalable high-throughput pipeline for inferring molecular mechanisms of non-coding genetic variants.
Bioinformatics. 2020 Jun 1;36(12):3879-3881. doi: 10.1093/bioinformatics/btaa246.

本文引用的文献

1
Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations.
Nat Genet. 2019 Dec;51(12):1664-1669. doi: 10.1038/s41588-019-0538-0. Epub 2019 Nov 29.
2
Predicting the effects of SNPs on transcription factor binding affinity.
Bioinformatics. 2020 Jan 15;36(2):364-372. doi: 10.1093/bioinformatics/btz612.
3
Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays.
PLoS One. 2019 Jun 17;14(6):e0218073. doi: 10.1371/journal.pone.0218073. eCollection 2019.
4
IMPACT: Genomic Annotation of Cell-State-Specific Regulatory Elements Inferred from the Epigenome of Bound Transcription Factors.
Am J Hum Genet. 2019 May 2;104(5):879-895. doi: 10.1016/j.ajhg.2019.03.012. Epub 2019 Apr 18.
6
CADD: predicting the deleteriousness of variants throughout the human genome.
Nucleic Acids Res. 2019 Jan 8;47(D1):D886-D894. doi: 10.1093/nar/gky1016.
7
Arid5a makes the IL-17A/F-responsive pathway less arid.
Sci Signal. 2018 Oct 9;11(551):eaau8876. doi: 10.1126/scisignal.aau8876.
8
Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk.
Nat Genet. 2018 Oct;50(10):1483-1493. doi: 10.1038/s41588-018-0196-7. Epub 2018 Sep 3.
9
MMARGE: Motif Mutation Analysis for Regulatory Genomic Elements.
Nucleic Acids Res. 2018 Aug 21;46(14):7006-7021. doi: 10.1093/nar/gky491.
10
The Post-GWAS Era: From Association to Function.
Am J Hum Genet. 2018 May 3;102(5):717-730. doi: 10.1016/j.ajhg.2018.04.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验