文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

影响:从结合转录因子的表观基因组推断细胞状态特异性调控元件的基因组注释。

IMPACT: Genomic Annotation of Cell-State-Specific Regulatory Elements Inferred from the Epigenome of Bound Transcription Factors.

机构信息

Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA.

Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

出版信息

Am J Hum Genet. 2019 May 2;104(5):879-895. doi: 10.1016/j.ajhg.2019.03.012. Epub 2019 Apr 18.


DOI:10.1016/j.ajhg.2019.03.012
PMID:31006511
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6506796/
Abstract

Despite significant progress in annotating the genome with experimental methods, much of the regulatory noncoding genome remains poorly defined. Here we assert that regulatory elements may be characterized by leveraging local epigenomic signatures where specific transcription factors (TFs) are bound. To link these two features, we introduce IMPACT, a genome annotation strategy that identifies regulatory elements defined by cell-state-specific TF binding profiles, learned from 515 chromatin and sequence annotations. We validate IMPACT using multiple compelling applications. First, IMPACT distinguishes between bound and unbound TF motif sites with high accuracy (average AUPRC 0.81, SE 0.07; across 8 tested TFs) and outperforms state-of-the-art TF binding prediction methods, MocapG, MocapS, and Virtual ChIP-seq. Second, in eight tested cell types, RNA polymerase II IMPACT annotations capture more cis-eQTL variation than sequence-based annotations, such as promoters and TSS windows (25% average increase in enrichment). Third, integration with rheumatoid arthritis (RA) summary statistics from European (N = 38,242) and East Asian (N = 22,515) populations revealed that the top 5% of CD4 Treg IMPACT regulatory elements capture 85.7% of RA h2, the most comprehensive explanation for RA h2 to date. In comparison, the average RA h2 captured by compared CD4 T histone marks is 42.3% and by CD4 T specifically expressed gene sets is 36.4%. Lastly, we find that IMPACT may be used in many different cell types to identify complex trait associated regulatory elements.

摘要

尽管在使用实验方法对基因组进行注释方面取得了重大进展,但大部分调控性非编码基因组仍未得到很好的定义。在这里,我们断言,通过利用特定转录因子(TF)结合的局部表观基因组特征,可以对调控元件进行特征描述。为了将这两个特征联系起来,我们引入了 IMPACT,这是一种基因组注释策略,它可以识别由细胞状态特异性 TF 结合谱定义的调控元件,这些谱是从 515 个染色质和序列注释中学习到的。我们使用多种引人注目的应用程序来验证 IMPACT。首先,IMPACT 可以以高精度(平均 AUPRC 为 0.81,SE 为 0.07;在 8 个测试的 TF 中)区分结合和未结合的 TF 基序位点,并且优于最先进的 TF 结合预测方法 MocapG、MocapS 和 Virtual ChIP-seq。其次,在八个测试的细胞类型中,RNA 聚合酶 II 的 IMPACT 注释比基于序列的注释(例如启动子和 TSS 窗口)捕获更多的顺式-eQTL 变异(平均富集度增加 25%)。第三,与来自欧洲(N = 38,242)和东亚(N = 22,515)人群的类风湿关节炎(RA)汇总统计数据的整合表明,TOP5%的 CD4 Treg IMPACT 调控元件捕获了 RA h2 的 85.7%,这是迄今为止对 RA h2 最全面的解释。相比之下,比较 CD4 T 组蛋白标记平均捕获的 RA h2 为 42.3%,比较 CD4 T 特异性表达基因集捕获的 RA h2 为 36.4%。最后,我们发现,IMPACT 可以在许多不同的细胞类型中用于识别与复杂性状相关的调控元件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/d4853f0c8f54/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/b39c78dceb22/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/b3835559db54/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/50cd8bd05aa9/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/724965f98db9/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/59483044fefb/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/c961d7156be3/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/050737338bc6/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/d4853f0c8f54/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/b39c78dceb22/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/b3835559db54/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/50cd8bd05aa9/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/724965f98db9/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/59483044fefb/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/c961d7156be3/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/050737338bc6/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f23/6506796/d4853f0c8f54/gr8.jpg

相似文献

[1]
IMPACT: Genomic Annotation of Cell-State-Specific Regulatory Elements Inferred from the Epigenome of Bound Transcription Factors.

Am J Hum Genet. 2019-4-18

[2]
Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements.

BMC Biol. 2011-11-24

[3]
Epigenomic elements enriched in the promoters of autoimmunity susceptibility genes.

Epigenetics. 2014-2

[4]
Annotations capturing cell type-specific TF binding explain a large fraction of disease heritability.

Hum Mol Genet. 2020-5-8

[5]
Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions.

PLoS Comput Biol. 2013-12-5

[6]
Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.

Genome Biol. 2016-7-8

[7]
Deconvolving sequence features that discriminate between overlapping regulatory annotations.

PLoS Comput Biol. 2017-10-19

[8]
Accurate Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics Cell Types and Tissues by GenoSTAN.

PLoS One. 2017-1-5

[9]
A cis-regulatory map of the Drosophila genome.

Nature. 2011-3-24

[10]
Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features.

BMC Genomics. 2012-4-26

引用本文的文献

[1]
Enhancing disease risk gene discovery by integrating transcription factor-linked trans-variants into transcriptome-wide association analyses.

Nucleic Acids Res. 2025-1-7

[2]
The UCSC Genome Browser database: 2025 update.

Nucleic Acids Res. 2025-1-6

[3]
Powerful mapping of -genetic effects on gene expression across diverse populations reveals novel disease-critical genes.

medRxiv. 2024-9-26

[4]
Inferring causal cell types of human diseases and risk variants from candidate regulatory elements.

medRxiv. 2024-5-18

[5]
A statistical approach for identifying single nucleotide variants that affect transcription factor binding.

iScience. 2024-4-18

[6]
The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases.

Nat Rev Immunol. 2024-7

[7]
The genetic basis of autoimmunity seen through the lens of T cell functional traits.

Nat Commun. 2024-2-8

[8]
GWAS for systemic sclerosis identifies six novel susceptibility loci including one in the Fcγ receptor region.

Nat Commun. 2024-1-31

[9]
Dynamic regulatory elements in single-cell multimodal data implicate key immune cell states enriched for autoimmune disease heritability.

Nat Genet. 2023-12

[10]
Modeling tissue co-regulation estimates tissue-specific contributions to disease.

Nat Genet. 2023-9

本文引用的文献

[1]
Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome.

Genome Biol. 2022-6-10

[2]
Discovering in vivo cytokine-eQTL interactions from a lupus clinical trial.

Genome Biol. 2018-10-19

[3]
Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes.

Nat Genet. 2018-9-17

[4]
Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits.

Nat Genet. 2018-6-25

[5]
Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types.

Nat Genet. 2018-4-9

[6]
The Human Transcription Factors.

Cell. 2018-2-8

[7]
Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases.

Nat Genet. 2018-2-5

[8]
Inferring Relevant Cell Types for Complex Traits by Using Single-Cell Gene Expression.

Am J Hum Genet. 2017-11-2

[9]
Genetic landscape of interactive effects of alleles on susceptibility to ACPA(+) rheumatoid arthritis and ACPA levels in Japanese population.

J Med Genet. 2017-10-12

[10]
Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection.

Nat Genet. 2017-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索