Suppr超能文献

利用商品 SARS-CoV-2 蛋白和 hACE2 受体的等电聚焦图像法测定等电点。

Isoelectric point determination by imaged CIEF of commercially available SARS-CoV-2 proteins and the hACE2 receptor.

机构信息

Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany.

出版信息

Electrophoresis. 2021 Mar;42(6):687-692. doi: 10.1002/elps.202100015. Epub 2021 Feb 12.

Abstract

In order to contribute to the scientific research on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we have investigated the isoelectric points (pI) of several related proteins, which are commercially available: the receptor-binding domain (RBD) with His- and Fc-tag, the S1 subunit with His-tag, the S1/S2 subunits with His-tag and the human angiotensin-converting enzyme 2 (hACE2) with His-tag. First, the theoretical pI values, based on the amino acid (AA) sequences of the proteins, were calculated using the ProtParam tool from the Bioinformatics Resource Portal ExPASy. The proteins were then measured with the Maurice imaged CIEF system (native fluorescence detection), testing various measurement conditions, such as different ampholytes or ampholyte mixtures. Due to isoforms, we get sections with several peaks and not just one peak for each protein. The determined pI range for the RBD/Fc is 8.24-9.32 (theoretical pI: 8.55), for the RBD/His it is 7.36-9.88 (8.91) and for the S1/His it is 7.30-8.37 (7.80). The pI range of the S1/S2/His is 4.41-5.87 (no theoretical pI, AA sequence unknown) and for hACE2/His, the determined global range is 5.19-6.11 (5.60) for all experimental conditions chosen. All theoretically derived values were found within these ranges, usually close to the center. Therefore, we consider theoretical values as useful to make predictions about the isoelectric points of SARS-CoV-2 proteins. The experimental conditions had only a minor influence on the pI ranges obtained and mainly influenced the peak shapes.

摘要

为了促进对严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 的科学研究,我们研究了几种相关蛋白的等电点 (pI),这些蛋白均为市售产品:带有 His 和 Fc 标签的受体结合域 (RBD)、带有 His 标签的 S1 亚基、带有 His 标签的 S1/S2 亚基和带有 His 标签的人血管紧张素转化酶 2 (hACE2)。首先,使用 Bioinformatics Resource Portal ExPASy 上的 ProtParam 工具,根据蛋白质的氨基酸 (AA) 序列计算理论 pI 值。然后,使用 Maurice 成像 CIEF 系统(天然荧光检测)测量蛋白质,测试了不同的测量条件,例如不同的两性电解质或两性电解质混合物。由于存在同工型,我们得到了多个峰的部分,而不是每种蛋白质只有一个峰。RBD/Fc 的确定 pI 范围为 8.24-9.32(理论 pI:8.55),RBD/His 的 pI 范围为 7.36-9.88(8.91),S1/His 的 pI 范围为 7.30-8.37(7.80)。S1/S2/His 的 pI 范围为 4.41-5.87(无理论 pI,AA 序列未知),对于 hACE2/His,在所选择的所有实验条件下,确定的全局范围为 5.19-6.11(5.60)。所有理论推导的值都在这些范围内,通常接近中心。因此,我们认为理论值可用于预测 SARS-CoV-2 蛋白的等电点。实验条件对获得的 pI 范围的影响较小,主要影响峰形。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e0/8013610/781f1e256666/ELPS-42-687-g001.jpg

相似文献

1
Isoelectric point determination by imaged CIEF of commercially available SARS-CoV-2 proteins and the hACE2 receptor.
Electrophoresis. 2021 Mar;42(6):687-692. doi: 10.1002/elps.202100015. Epub 2021 Feb 12.
2
Targeting SARS-CoV-2 spike protein by stapled hACE2 peptides.
Chem Commun (Camb). 2021 Apr 4;57(26):3283-3286. doi: 10.1039/d0cc08387a. Epub 2021 Mar 2.
5
Static all-atom energetic mappings of the SARS-Cov-2 spike protein and dynamic stability analysis of "Up" versus "Down" protomer states.
PLoS One. 2020 Nov 10;15(11):e0241168. doi: 10.1371/journal.pone.0241168. eCollection 2020.
7
Site-specific characterization of SARS-CoV-2 spike glycoprotein receptor-binding domain.
Glycobiology. 2021 Apr 1;31(3):181-187. doi: 10.1093/glycob/cwaa085.
8
SARS-CoV-2 omicron RBD forms a weaker binding affinity to hACE2 compared to Delta RBD in studies.
J Biomol Struct Dyn. 2024 May;42(8):4087-4096. doi: 10.1080/07391102.2023.2222827. Epub 2023 Jun 22.
10
Potential chimeric peptides to block the SARS-CoV-2 spike receptor-binding domain.
F1000Res. 2020 Jun 9;9:576. doi: 10.12688/f1000research.24074.1. eCollection 2020.

引用本文的文献

2
Development of a scalable single process for producing SARS-CoV-2 RBD monomer and dimer vaccine antigens.
Front Bioeng Biotechnol. 2023 Nov 17;11:1287551. doi: 10.3389/fbioe.2023.1287551. eCollection 2023.
3
Effect of Low Copper Doping on the Optical, Cytocompatible, Antibacterial, and SARS-CoV-2 Trapping Properties of Calcium Phosphate Glasses.
ACS Omega. 2023 Nov 1;8(45):42264-42274. doi: 10.1021/acsomega.3c04293. eCollection 2023 Nov 14.
4
Unanswered questions on the airborne transmission of COVID-19.
Environ Chem Lett. 2023;21(2):725-739. doi: 10.1007/s10311-022-01557-z. Epub 2023 Jan 6.
7
essential oil, a novel anti-COVID-19 Omicron spike protein natural products: A computational study.
Arab J Chem. 2022 Jul;15(7):103916. doi: 10.1016/j.arabjc.2022.103916. Epub 2022 Apr 18.
8
Sensitive detection of SARS-CoV-2 spike protein using vertically-oriented silicon nanowire array-based biosensor.
Sens Biosensing Res. 2022 Jun;36:100487. doi: 10.1016/j.sbsr.2022.100487. Epub 2022 Mar 22.
9
Design and simulation of a millifluidic device for differential detection of SARS-CoV-2 and H1N1 based on triboelectricity.
Bioelectrochemistry. 2022 Jun;145:108096. doi: 10.1016/j.bioelechem.2022.108096. Epub 2022 Mar 16.
10
Carbon nanotube field-effect transistor (CNT-FET)-based biosensor for rapid detection of SARS-CoV-2 (COVID-19) surface spike protein S1.
Bioelectrochemistry. 2022 Feb;143:107982. doi: 10.1016/j.bioelechem.2021.107982. Epub 2021 Oct 15.

本文引用的文献

1
Physicochemical properties of SARS-CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control.
Electrophoresis. 2020 Jul;41(13-14):1137-1151. doi: 10.1002/elps.202000121. Epub 2020 Jun 8.
2
Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.
Cell. 2020 Apr 16;181(2):281-292.e6. doi: 10.1016/j.cell.2020.02.058. Epub 2020 Mar 9.
3
Design of experiments as a valuable tool for biopharmaceutical analysis with (imaged) capillary isoelectric focusing.
Electrophoresis. 2019 Sep;40(18-19):2382-2389. doi: 10.1002/elps.201900162. Epub 2019 Jun 21.
5
Trajectory of isoelectric focusing from gels to capillaries to immobilized gradients in capillaries.
Proteomics. 2012 Oct;12(19-20):2918-26. doi: 10.1002/pmic.201200213. Epub 2012 Sep 24.
6
On-line combination of monolithic immobilized pH gradient-based capillary isoelectric focusing and capillary zone electrophoresis via a partially etched porous interface for protein analysis.
J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Apr 1;879(11-12):804-10. doi: 10.1016/j.jchromb.2011.02.020. Epub 2011 Feb 21.
7
Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection.
Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12543-7. doi: 10.1073/pnas.0503203102. Epub 2005 Aug 22.
8
Repeatedly usable immobilized pH gradient in a monolithic capillary column.
Electrophoresis. 2004 Jun;25(12):1729-34. doi: 10.1002/elps.200405916.
9
Isoelectric focusing in gels.
J Chromatogr. 1974 Sep 25;98(2):271-321. doi: 10.1016/s0021-9673(00)92076-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验