Barcelona Supercomputing Center (BSC), Barcelona, Spain.
ICREA, Barcelona, Spain.
Mol Oncol. 2021 Apr;15(4):817-829. doi: 10.1002/1878-0261.12920. Epub 2021 Feb 20.
From genome-scale experimental studies to imaging data, behavioral footprints, and longitudinal healthcare records, the convergence of big data in cancer research and the advances in Artificial Intelligence (AI) is paving the way to develop a systems view of cancer. Nevertheless, this biomedical area is largely characterized by the co-existence of big data and small data resources, highlighting the need for a deeper investigation about the crosstalk between different levels of data granularity, including varied sample sizes, labels, data types, and other data descriptors. This review introduces the current challenges, limitations, and solutions of AI in the heterogeneous landscape of data granularity in cancer research. Such a variety of cancer molecular and clinical data calls for advancing the interoperability among AI approaches, with particular emphasis on the synergy between discriminative and generative models that we discuss in this work with several examples of techniques and applications.
从基因组规模的实验研究到成像数据、行为足迹和纵向医疗记录,癌症研究中的大数据和人工智能 (AI) 的进步正在为癌症的系统研究铺平道路。然而,这个生物医学领域在很大程度上的特点是大数据和小数据资源共存,这突出表明需要更深入地研究不同层次的数据粒度之间的相互作用,包括不同的样本大小、标签、数据类型和其他数据描述符。本综述介绍了当前人工智能在癌症研究中数据粒度异构性领域所面临的挑战、限制和解决方案。这种多样化的癌症分子和临床数据需要提高人工智能方法之间的互操作性,特别强调我们在这项工作中讨论的判别和生成模型之间的协同作用,并用一些技术和应用的例子来说明。