Suppr超能文献

基于集成迁移学习的抗癌药物反应预测。

Ensemble transfer learning for the prediction of anti-cancer drug response.

机构信息

Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL, 60439, USA.

Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA.

出版信息

Sci Rep. 2020 Oct 22;10(1):18040. doi: 10.1038/s41598-020-74921-0.

Abstract

Transfer learning, which transfers patterns learned on a source dataset to a related target dataset for constructing prediction models, has been shown effective in many applications. In this paper, we investigate whether transfer learning can be used to improve the performance of anti-cancer drug response prediction models. Previous transfer learning studies for drug response prediction focused on building models to predict the response of tumor cells to a specific drug treatment. We target the more challenging task of building general prediction models that can make predictions for both new tumor cells and new drugs. Uniquely, we investigate the power of transfer learning for three drug response prediction applications including drug repurposing, precision oncology, and new drug development, through different data partition schemes in cross-validation. We extend the classic transfer learning framework through ensemble and demonstrate its general utility with three representative prediction algorithms including a gradient boosting model and two deep neural networks. The ensemble transfer learning framework is tested on benchmark in vitro drug screening datasets. The results demonstrate that our framework broadly improves the prediction performance in all three drug response prediction applications with all three prediction algorithms.

摘要

迁移学习是一种将从源数据集学习到的模式转移到相关的目标数据集,用于构建预测模型的方法,已在许多应用中得到证实是有效的。在本文中,我们研究了迁移学习是否可以用于提高抗癌药物反应预测模型的性能。之前用于药物反应预测的迁移学习研究主要集中在构建模型以预测肿瘤细胞对特定药物治疗的反应上。我们的目标是更具挑战性的任务,即构建能够对新的肿瘤细胞和新药进行预测的通用预测模型。我们通过交叉验证中的不同数据分区方案,独特地研究了迁移学习在药物重定位、精准肿瘤学和新药开发这三种药物反应预测应用中的作用。我们通过集成扩展了经典的迁移学习框架,并通过包括梯度提升模型和两个深度神经网络在内的三种代表性预测算法展示了其通用实用性。该集成迁移学习框架在基准体外药物筛选数据集上进行了测试。结果表明,我们的框架在所有三种药物反应预测应用中都广泛提高了所有三种预测算法的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b64/7581765/044d07e3b0a6/41598_2020_74921_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验