Suppr超能文献

利用生态变量预测南澳大利亚的罗斯河病毒病发病率。

Using ecological variables to predict Ross River virus disease incidence in South Australia.

机构信息

School of Public Health, The University of Adelaide, Adelaide, Australia.

Australian Centre for Precision Health, University of South Australia, Adelaide, Australia.

出版信息

Trans R Soc Trop Med Hyg. 2021 Sep 3;115(9):1045-1053. doi: 10.1093/trstmh/traa201.

Abstract

BACKGROUND

Ross River virus (RRV) disease is Australia's most widespread vector-borne disease causing significant public health concern. The aim of this study was to identify the ecological covariates of RRV risk and to develop epidemic forecasting models in a disease hotspot region of South Australia.

METHODS

Seasonal autoregressive integrated moving average models were used to predict the incidence of RRV disease in the Riverland region of South Australia, an area known to have a high incidence of the disease. The model was developed using data from January 2000 to December 2012 then validated using disease notification data on reported cases for the following year.

RESULTS

Monthly numbers of the mosquito Culex annulirostris (β=0.033, p<0.001) and total rainfall (β=0.263, p=0.002) were significant predictors of RRV transmission in the study region. The forecasted RRV incidence in the predictive model was generally consistent with the actual number of cases in the study area.

CONCLUSIONS

A predictive model has been shown to be useful in forecasting the occurrence of RRV disease, with increased vector populations and rainfall being important factors associated with transmission. This approach may be useful in a public health context by providing early warning of vector-borne diseases in other settings.

摘要

背景

罗斯河病毒(RRV)病是澳大利亚分布最广的虫媒病,对公共卫生造成了重大影响。本研究旨在确定 RRV 风险的生态协变量,并在南澳大利亚的疾病热点地区开发流行预测模型。

方法

使用季节性自回归综合移动平均模型预测南澳大利亚里弗兰地区的 RRV 疾病发病率,该地区已知疾病发病率较高。该模型使用 2000 年 1 月至 2012 年 12 月的数据进行开发,然后使用次年报告病例的疾病通知数据进行验证。

结果

蚊子库蚊(Culex annulirostris)(β=0.033,p<0.001)和总降雨量(β=0.263,p=0.002)的月数量是研究区域 RRV 传播的重要预测因子。预测模型中的 RRV 发病率与研究区域的实际病例数大致相符。

结论

预测模型在预测 RRV 疾病的发生方面显示出一定的实用性,增加的媒介种群和降雨量是与传播相关的重要因素。这种方法可能对其他地区的虫媒病提供早期预警,在公共卫生方面具有一定的应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验