Suppr超能文献

利用长期蚊虫诱捕数据预测澳大利亚北部热带地区达尔文市罗斯河病毒感染的指标

Predictive indicators for Ross River virus infection in the Darwin area of tropical northern Australia, using long-term mosquito trapping data.

作者信息

Jacups Susan P, Whelan Peter I, Markey Peter G, Cleland Sam J, Williamson Grant J, Currie Bart J

机构信息

School for Environmental Research; Tropical and Emerging Infectious Diseases Division, Charles Darwin University, Darwin, Australia.

出版信息

Trop Med Int Health. 2008 Jul;13(7):943-52. doi: 10.1111/j.1365-3156.2008.02095.x. Epub 2008 May 13.

Abstract

OBJECTIVES

To describe the epidemiology of Ross River virus (RRV) infection in the endemic Darwin region of tropical northern Australia and to develop a predictive model for RRV infections.

METHODS

Analysis of laboratory confirmed cases of RRV infection between 01 January 1991 and 30 June 2006, together with climate, tidal and mosquito data collected weekly over the study period from 11 trap sites around Darwin. The epidemiology was described, correlations with various lag times were performed, followed by Poisson modelling to determine the best main effects model to predict RRV infection.

RESULTS

Ross River virus infection was reported equally in males and females in 1256 people over the 15.5 years. Average annual incidence was 113/100 000 people. Infections peaked in the 30-34 age-group for both sexes. Correlations revealed strong associations between monthly RRV infections and climatic variables and also each of the four implicated mosquito species populations. Three models were created to identify the best predictors of RRV infections for the Darwin area. The climate-only model included total rainfall, average daily minimum temperature and maximum tide. This model explained 44.3% deviance. Using vector-only variables, the best fit was obtained with average monthly trap numbers of Culex annulirostris, Aedes phaecasiatus, Aedes notoscriptus and Aedes vigilax. This model explained 59.5% deviance. The best global model included rainfall, minimum temperature and three mosquito species. This model explained 63.5% deviance, and predicted disease accurately.

CONCLUSIONS

We have produced a model that accurately predicts RRV infections throughout the year, in the Darwin region. Our model also indicates that predicted anthropogenic global climatic changes may result in an increase in RRV infections. Further research needs to target other high-risk areas elsewhere in tropical Australia to ascertain the best local climatic and vector predictive RRV infection models for each region. This methodology can also be tested for assessing utility of predictive models for other mosquito-borne diseases endemic to locations outside Australia.

摘要

目的

描述澳大利亚北部热带地区达尔文流行区罗斯河病毒(RRV)感染的流行病学特征,并建立RRV感染的预测模型。

方法

分析1991年1月1日至2006年6月30日期间实验室确诊的RRV感染病例,以及在研究期间从达尔文周围11个诱捕点每周收集的气候、潮汐和蚊虫数据。描述了流行病学特征,进行了与不同滞后时间的相关性分析,随后进行泊松建模以确定预测RRV感染的最佳主效应模型。

结果

在15.5年期间,1256人中RRV感染在男性和女性中的报告率相同。年平均发病率为113/10万人口。男女感染率在30 - 34岁年龄组达到峰值。相关性分析显示,每月RRV感染与气候变量以及四种涉及的蚊虫种群数量之间存在强关联。创建了三个模型以确定达尔文地区RRV感染的最佳预测因子。仅气候模型包括总降雨量、日平均最低温度和最高潮位。该模型解释了44.3%的偏差。仅使用媒介变量时,库蚊环喙亚种、费氏伊蚊、新域伊蚊和警觉伊蚊的月平均诱捕数量拟合效果最佳。该模型解释了59.5%的偏差。最佳全局模型包括降雨量、最低温度和三种蚊虫。该模型解释了63.5%的偏差,并能准确预测疾病。

结论

我们建立了一个能准确预测达尔文地区全年RRV感染情况的模型。我们的模型还表明,预计的人为全球气候变化可能导致RRV感染增加。需要进一步研究澳大利亚热带地区其他高危地区,以确定每个地区预测RRV感染的最佳当地气候和媒介模型。这种方法也可用于测试评估澳大利亚以外地区特有的其他蚊媒疾病预测模型的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验