Suppr超能文献

重新设计生命的遗传聚合物。

Redesigning the Genetic Polymers of Life.

机构信息

Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States.

出版信息

Acc Chem Res. 2021 Feb 16;54(4):1056-1065. doi: 10.1021/acs.accounts.0c00886. Epub 2021 Feb 3.

Abstract

Genomes can be viewed as constantly updated memory systems where information propagated in cells is refined over time by natural selection. This process, commonly known as heredity and evolution, has been the sole domain of DNA since the origin of prokaryotes. Now, some 3.5 billion years later, the pendulum of discovery has swung in a new direction, with carefully trained practitioners enabling the replication and evolution of "xeno-nucleic acids" or "XNAs"-synthetic genetic polymers in which the natural sugar found in DNA and RNA has been replaced with a different type of sugar moiety. XNAs have attracted significant attention as new polymers for synthetic biology, biotechnology, and medicine because of their unique physicochemical properties that may include increased biological stability, enhanced chemical stability, altered helical geometry, or even elevated thermodynamics of Watson-Crick base pairing.This Account describes our contribution to the field of synthetic biology, where chemical synthesis and polymerase engineering have allowed my lab and others to extend the concepts of heredity and evolution to synthetic genetic polymers with backbone structures that are distinct from those found in nature. I will begin with a discussion of α-l-threofuranosyl nucleic acid (TNA), a specific type of XNA that was chosen as a model system to represent any XNA system. I will then proceed to discuss advances in organic chemistry that were made to enable the synthesis of gram quantities of TNA phosphoramidites and nucleoside triphosphates, the monomers used for solid-phase and polymerase-mediated TNA synthesis, respectively. Next, I will recount our development of droplet-based optical sorting (DrOPS), a single-cell microfluidic technique that was established to evolve XNA polymerases in the laboratory. This section will conclude with structural insights that have been gained by solving X-ray crystal structures of a laboratory-evolved TNA polymerase and a natural DNA polymerase that functions with general reverse transcriptase activity on XNA templates.The final passage of this Account will examine the role that XNAs have played in synthetic biology by highlighting examples in which engineered polymerases have enabled the evolution of biologically stable affinity reagents (aptamers) and catalysts (XNAzymes) as well as the storage and retrieval of binary information encoded in electronic word and picture file formats. Because these examples provide only a glimpse of what the future may have in store for XNA, I will conclude the Account with my thoughts on how synthetic genetic polymers could help drive new innovations in synthetic biology and molecular medicine.

摘要

基因组可以被视为不断更新的记忆系统,其中细胞内传播的信息通过自然选择随着时间的推移而不断得到完善。这个过程通常被称为遗传和进化,自从原核生物出现以来,它一直是 DNA 的唯一领域。现在,大约 35 亿年过去了,发现的钟摆已经转向了一个新的方向,经过精心训练的从业者使“异源核酸”或“XNAs”的复制和进化成为可能,“异源核酸”是一种合成遗传聚合物,其中天然存在于 DNA 和 RNA 中的糖被替换为不同类型的糖部分。XNAs 因其独特的物理化学性质而引起了人们的广泛关注,这些性质可能包括增加的生物稳定性、增强的化学稳定性、改变的螺旋几何形状,甚至升高的 Watson-Crick 碱基配对热力学。本综述描述了我们在合成生物学领域的贡献,在该领域,化学合成和聚合酶工程使我的实验室和其他实验室能够将遗传和进化的概念扩展到具有与自然界中发现的结构不同的骨架结构的合成遗传聚合物。我将首先讨论α-L-呋喃糖核酸(TNA),这是一种特定类型的 XNA,被选为代表任何 XNA 系统的模型系统。然后,我将继续讨论为实现 TNA 磷酰胺和核苷三磷酸的克级合成而取得的有机化学进展,分别为固相和聚合酶介导的 TNA 合成所用的单体。接下来,我将讲述我们开发基于液滴的光学分选(DrOPS)的情况,这是一种单细胞微流控技术,用于在实验室中进化 XNA 聚合酶。本节将以解决实验室进化的 TNA 聚合酶和具有在 XNA 模板上具有通用逆转录酶活性的天然 DNA 聚合酶的 X 射线晶体结构获得的结构见解结束。本综述的最后一部分将通过突出展示工程聚合酶使生物稳定的亲和试剂(适体)和催化剂(XNAzymes)以及以电子字和图片文件格式存储和检索编码的二进制信息的进化成为可能的实例,来考察 XNAs 在合成生物学中的作用。由于这些实例仅提供了 XNA 未来可能具有的一瞥,我将以关于合成遗传聚合物如何帮助推动合成生物学和分子医学新创新的想法结束本综述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验