Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA.
Nat Commun. 2017 Nov 27;8(1):1810. doi: 10.1038/s41467-017-02014-0.
Darwinian evolution experiments carried out on xeno-nucleic acid (XNA) polymers require engineered polymerases that can faithfully and efficiently copy genetic information back and forth between DNA and XNA. However, current XNA polymerases function with inferior activity relative to their natural counterparts. Here, we report five X-ray crystal structures that illustrate the pathway by which α-(L)-threofuranosyl nucleic acid (TNA) triphosphates are selected and extended in a template-dependent manner using a laboratory-evolved polymerase known as Kod-RI. Structural comparison of the apo, binary, open and closed ternary, and translocated product detail an ensemble of interactions and conformational changes required to promote TNA synthesis. Close inspection of the active site in the closed ternary structure reveals a sub-optimal binding geometry that explains the slow rate of catalysis. This key piece of information, which is missing for all naturally occurring archaeal DNA polymerases, provides a framework for engineering new TNA polymerase variants.
在异核酸(XNA)聚合物上进行的达尔文进化实验需要经过工程改造的聚合酶,这些聚合酶能够在 DNA 和 XNA 之间准确高效地复制遗传信息。然而,目前的 XNA 聚合酶的活性相对其天然对应物较低。在这里,我们报告了五个 X 射线晶体结构,这些结构说明了通过实验室进化的聚合酶 Kod-RI 以模板依赖的方式选择和延伸 α-(L)-苏糖核酸(TNA)三磷酸的途径。对无配体、二元、开放和闭合三元以及易位产物的结构比较详细说明了促进 TNA 合成所需的一系列相互作用和构象变化。在闭合三元结构的活性位点的仔细检查揭示了一种亚最佳的结合几何形状,这解释了催化缓慢的原因。对于所有天然存在的古菌 DNA 聚合酶来说,这是缺失的关键信息,为设计新型 TNA 聚合酶变体提供了框架。