Suppr超能文献

探究预测健康类 APP 使用的综合认知模型:纵向观察研究。

Examining an Integrative Cognitive Model of Predicting Health App Use: Longitudinal Observational Study.

机构信息

Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, United States.

Department of Communication, College of Social Science, Seoul National University, Seoul, Republic of Korea.

出版信息

JMIR Mhealth Uhealth. 2021 Feb 3;9(2):e24539. doi: 10.2196/24539.

Abstract

BACKGROUND

Specifying the determinants of using health apps has been an important research topic for health scholars as health apps have proliferated during the past decade. Socioeconomic status (SES) has been revealed as a significant determinant of using health apps, but the cognitive mechanisms underlying the relationship between SES and health app use are unknown.

OBJECTIVE

This study aims to examine the cognitive mechanisms underlying the relationships between SES and use of health apps, applying the integrative model of behavioral prediction (IM). The model hypothesizes the indirect influences of SES on intentions to use health apps, which in turn predict actual use of health apps. The relationships between SES and intentions to use health apps were assumed to be mediated by proximal variables (attitudes, perceived behavioral control [PBC], injunctive norms, and descriptive norms).

METHODS

We conducted path analyses using data from a two-wave opt-in panel survey of Korean adults who knew about health apps. The number of respondents was 605 at baseline and 440 at follow-up. We compared our model with two alternative theoretical models based on modified IM to further clarify the roles of determinants of health app use.

RESULTS

Attitudes (β=.220, P<.001), PBC (β=.461, P<.001), and injunctive norms (β=.186, P<.001) were positively associated with intentions to use health apps, which, in turn, were positively related to actual use of health apps (β=.106, P=.03). Income was positively associated with intentions to use health apps, and this relationship was mediated by attitudes (B=0.012, 95% CI 0.001-0.023) and PBC (B=0.026, 95% CI 0.004-0.048). Education was positively associated with descriptive norms (β=.078, P=.03), but descriptive norms were not significantly related to intentions to use health apps. We also found that PBC interacted with attitudes (B=0.043, SE 0.022, P=.046) and jointly influenced intentions to use health apps, whereas the results did not support direct influences of education, income, and PBC on health app use.

CONCLUSIONS

We found that PBC over using health apps may be the most important factor in predicting health app use. This suggests the necessity of designing and promoting health apps in a user-friendly way. Our findings also imply that socioeconomic inequalities in using health apps may be reduced by increasing positive attitudes toward, and boosting PBC over, health app use among individuals with low income.

摘要

背景

在过去十年中,随着健康应用程序的普及,确定使用健康应用程序的决定因素一直是健康学者的一个重要研究课题。社会经济地位(SES)已被证明是使用健康应用程序的重要决定因素,但 SES 与健康应用程序使用之间关系的认知机制尚不清楚。

目的

本研究旨在应用行为预测综合模型(IM)检验 SES 与健康应用程序使用之间关系的认知机制。该模型假设 SES 对使用健康应用程序的意愿有间接影响,而使用健康应用程序的意愿又反过来预测实际使用健康应用程序。SES 与使用健康应用程序的意愿之间的关系被假定通过近端变量(态度、感知行为控制[PBC]、规范指令和描述性规范)进行中介。

方法

我们使用韩国成年人对健康应用程序有一定了解的两波参与式小组调查的纵向数据进行路径分析。基线的应答者人数为 605 人,随访时为 440 人。我们将我们的模型与基于修改后的 IM 的两个替代理论模型进行了比较,以进一步阐明健康应用程序使用决定因素的作用。

结果

态度(β=.220,P<.001)、PBC(β=.461,P<.001)和规范指令(β=.186,P<.001)与使用健康应用程序的意愿呈正相关,而使用健康应用程序的意愿又与实际使用健康应用程序呈正相关(β=.106,P=.03)。收入与使用健康应用程序的意愿呈正相关,这种关系通过态度(B=0.012,95%CI 0.001-0.023)和 PBC(B=0.026,95%CI 0.004-0.048)得到中介。教育与描述性规范呈正相关(β=.078,P=.03),但描述性规范与使用健康应用程序的意愿没有显著关系。我们还发现,PBC 与态度(B=0.043,SE 0.022,P=.046)相互作用并共同影响使用健康应用程序的意愿,而教育、收入和 PBC 对健康应用程序使用的直接影响则不支持。

结论

我们发现,使用健康应用程序的 PBC 可能是预测健康应用程序使用的最重要因素。这表明需要以用户友好的方式设计和推广健康应用程序。我们的研究结果还表明,通过提高低收入人群对健康应用程序的积极态度和增强他们对健康应用程序的 PBC,可以减少使用健康应用程序方面的社会经济不平等。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e1/7889417/cdb0b9ad031a/mhealth_v9i2e24539_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验