文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

了解移动健康在各阶段使用中的不平等现象:系统评价与荟萃分析

Understanding Inequalities in Mobile Health Utilization Across Phases: Systematic Review and Meta-Analysis.

作者信息

Yang Seongwoo, Cha Myoung Jin, van Kessel Robin, Warrier Govind, Thrul Johannes, Lee Mangyeong, Yoon Junghee, Kang Danbee, Cho Juhee

机构信息

Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.

Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

出版信息

J Med Internet Res. 2025 Aug 14;27:e71349. doi: 10.2196/71349.


DOI:10.2196/71349
PMID:40811740
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12352709/
Abstract

BACKGROUND: Mobile health (mHealth) holds promise for enhancing patient care, yet attrition in its use remains a major barrier. Low retention rates limit its potential impact, while barriers to accessing or adopting mHealth vary across populations and countries. These differences in utilization of mHealth may exacerbate health inequalities, contributing to the digital health divide. OBJECTIVE: We aimed to conduct a systematic review and meta-analysis to investigate the factors associated with inequalities in mHealth utilization across different implementation phases, including access, adoption, adherence, and maintenance. METHODS: This systematic review and meta-analysis analyzed mHealth research from 2000 to May 30, 2024, using databases, including PubMed, Web of Science, MEDLINE, and ProQuest. Eligible studies included smartphones, mHealth apps, wearables, and inequality indicators across 4 mHealth phases: access, adoption, adherence, and maintenance. Excluded studies were nonpeer-reviewed, opinion-based, or not in English. Extracted data included study characteristics, target populations, health outcomes, and inequality factors like age, gender, socioeconomic status, and digital literacy. Factors were categorized using a digital health equity framework (biological, behavioral, sociocultural, digital, health care system, and physical domains). Meta-analyses were performed using a random-effects model for factors reported in at least three studies, with heterogeneity assessed by the I² statistic. RESULTS: Among 1990 studies, 62 studies met the inclusion criteria, and 30 studies underwent meta-analysis. The phases of mHealth utilization were access (n=23, 37%), adoption (n=47, 76%), adherence (n=9, 15%), and maintenance (n=2, 3%). Meta-analysis showed older age was negatively associated with mHealth adoption (odds ratio [OR] 0.47, 95% CI 0.23-0.93), while higher education and income were positively associated in both access and adoption phases. Employment showed significant associations in the access phase (OR 1.49, 95% CI 1.08-2.05), whereas comorbidities (OR 1.39, 95% CI 1.03-1.86) and private insurance (OR 1.63, 95% CI 1.07-2.48) were significantly associated with adoption of mHealth. Women (OR 1.24, 95% CI 1.06-1.45) and physically active individuals (OR 1.64, 95% CI 1.07-2.50) were more likely to adopt mHealth. CONCLUSIONS: The conceptual framework outlined in this study highlights the multifaceted nature of mHealth utilization across all the phases of mHealth engagement. To address these inequalities, tailored and personalized interventions are required at each phase of mHealth utilization. Targeted efforts can enhance digital access for older and low-income adults while promoting engagement through education, insurance support, and healthy behaviors, thereby promoting equitable and effective mHealth use. By recognizing the interconnectedness of these domains, policy makers and health care stakeholders can design interventions that not only address the phase-specific barriers but also bridge broader inequalities in health care access and engagement.

摘要

背景:移动健康(mHealth)有望改善患者护理,但在其使用过程中的人员流失仍是一个主要障碍。低留存率限制了其潜在影响,而获取或采用移动健康的障碍在不同人群和国家中各不相同。移动健康利用方面的这些差异可能会加剧健康不平等,导致数字健康鸿沟。 目的:我们旨在进行一项系统综述和荟萃分析,以调查在移动健康利用的不同实施阶段(包括获取、采用、坚持和维持)中与不平等相关的因素。 方法:这项系统综述和荟萃分析使用包括PubMed、科学网、MEDLINE和ProQuest在内的数据库,分析了2000年至2024年5月30日的移动健康研究。符合条件的研究包括智能手机、移动健康应用程序、可穿戴设备,以及移动健康4个阶段(获取、采用、坚持和维持)的不平等指标。排除的研究包括未经同行评审的、基于观点的或非英文的研究。提取的数据包括研究特征、目标人群、健康结果,以及年龄、性别、社会经济地位和数字素养等不平等因素。使用数字健康公平框架(生物、行为、社会文化、数字、医疗保健系统和物理领域)对因素进行分类。对至少三项研究报告的因素使用随机效应模型进行荟萃分析,通过I²统计量评估异质性。 结果:在1990项研究中,62项研究符合纳入标准,30项研究进行了荟萃分析。移动健康利用阶段包括获取(n = 23,37%)、采用(n = 47,76%)、坚持(n = 9,15%)和维持(n = 2,3%)。荟萃分析表明,年龄较大与移动健康采用呈负相关(优势比[OR] 0.47,95%置信区间0.23 - 0.93),而在获取和采用阶段,高等教育和高收入与移动健康采用呈正相关。就业在获取阶段显示出显著关联(OR 1.49,95%置信区间1.08 - 2.05),而合并症(OR 1.39,95%置信区间1.03 - 1.86)和私人保险(OR 1.63,95%置信区间1.07 - 2.48)与移动健康采用显著相关。女性(OR 1.24,95%置信区间1.06 - 1.45)和身体活跃的个体(OR 1.64,95%置信区间1.07 - 2.50)更有可能采用移动健康。 结论:本研究中概述的概念框架突出了移动健康参与所有阶段中移动健康利用的多方面性质。为了解决这些不平等问题,在移动健康利用的每个阶段都需要量身定制的个性化干预措施。有针对性的努力可以增加老年人和低收入成年人的数字接入,同时通过教育、保险支持和健康行为促进参与,从而促进移动健康的公平有效使用。通过认识到这些领域的相互联系,政策制定者和医疗保健利益相关者可以设计出不仅能解决特定阶段障碍,还能弥合医疗保健获取和参与方面更广泛不平等的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c83f/12352709/eaea4f15fe83/jmir-v27-e71349-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c83f/12352709/42f43656fafa/jmir-v27-e71349-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c83f/12352709/55bf66fc181a/jmir-v27-e71349-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c83f/12352709/ad8cadbe9f2e/jmir-v27-e71349-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c83f/12352709/4840d84e5f1a/jmir-v27-e71349-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c83f/12352709/eaea4f15fe83/jmir-v27-e71349-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c83f/12352709/42f43656fafa/jmir-v27-e71349-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c83f/12352709/55bf66fc181a/jmir-v27-e71349-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c83f/12352709/ad8cadbe9f2e/jmir-v27-e71349-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c83f/12352709/4840d84e5f1a/jmir-v27-e71349-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c83f/12352709/eaea4f15fe83/jmir-v27-e71349-g005.jpg

相似文献

[1]
Understanding Inequalities in Mobile Health Utilization Across Phases: Systematic Review and Meta-Analysis.

J Med Internet Res. 2025-8-14

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[4]
Sociodemographic and Socioeconomic Determinants for the Usage of Digital Patient Portals in Hospitals: Systematic Review and Meta-Analysis on the Digital Divide.

J Med Internet Res. 2025-6-3

[5]
Multifaceted behavioral interventions to improve topical glaucoma therapy adherence in adults.

Cochrane Database Syst Rev. 2025-6-11

[6]
Evaluating Effectiveness of mHealth Apps for Older Adults With Diabetes: Meta-Analysis of Randomized Controlled Trials.

J Med Internet Res. 2025-6-17

[7]
Cultural competence education for health professionals.

Cochrane Database Syst Rev. 2014-5-5

[8]
How to Implement Digital Clinical Consultations in UK Maternity Care: the ARM@DA Realist Review.

Health Soc Care Deliv Res. 2025-5-21

[9]
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.

Cochrane Database Syst Rev. 2015-7-27

[10]
Examining the Influence of Demographic and Socioeconomic Factors on Disparities in Health Care App Usage: Protocol for a Systematic Scoping Review.

JMIR Res Protoc. 2025-7-15

本文引用的文献

[1]
A content-based review of mobile health applications for breast cancer prevention and education: Characteristics, quality and functionality analysis.

Digit Health. 2024-3-15

[2]
Dissemination Strategies for mHealth Apps: Systematic Review.

JMIR Mhealth Uhealth. 2024-1-5

[3]
Technologies for Managing the Health of Older Adults with Multiple Chronic Conditions: A Systematic Literature Review.

Healthcare (Basel). 2023-11-3

[4]
Racial Disparities in Shared Decision-Making and the Use of mHealth Technology Among Adults With Hypertension in the 2017-2020 Health Information National Trends Survey: Cross-Sectional Study in the United States.

J Med Internet Res. 2023-9-13

[5]
Exploring Perceptions and Needs of Mobile Health Interventions for Nutrition, Anemia, and Preeclampsia among Pregnant Women in Underprivileged Indian Communities: A Cross-Sectional Survey.

Nutrients. 2023-8-24

[6]
Mapping Factors That Affect the Uptake of Digital Therapeutics Within Health Systems: Scoping Review.

J Med Internet Res. 2023-7-25

[7]
The Adoption of a COVID-19 Contact-Tracing App: Cluster Analysis.

JMIR Form Res. 2023-6-20

[8]
User-Centered Mobile Applications for Stroke Survivors (MAPPS): A Mixed-Methods Study of Patient Preferences.

Arch Phys Med Rehabil. 2023-10

[9]
Examining Equity in Access and Utilization of a Freely Available Meditation App.

Npj Ment Health Res. 2023

[10]
Effectiveness and implementation of a text messaging intervention to reduce depression and anxiety symptoms among Latinx and Non-Latinx white users during the COVID-19 pandemic.

Behav Res Ther. 2023-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索