Yang Seongwoo, Cha Myoung Jin, van Kessel Robin, Warrier Govind, Thrul Johannes, Lee Mangyeong, Yoon Junghee, Kang Danbee, Cho Juhee
Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
J Med Internet Res. 2025 Aug 14;27:e71349. doi: 10.2196/71349.
BACKGROUND: Mobile health (mHealth) holds promise for enhancing patient care, yet attrition in its use remains a major barrier. Low retention rates limit its potential impact, while barriers to accessing or adopting mHealth vary across populations and countries. These differences in utilization of mHealth may exacerbate health inequalities, contributing to the digital health divide. OBJECTIVE: We aimed to conduct a systematic review and meta-analysis to investigate the factors associated with inequalities in mHealth utilization across different implementation phases, including access, adoption, adherence, and maintenance. METHODS: This systematic review and meta-analysis analyzed mHealth research from 2000 to May 30, 2024, using databases, including PubMed, Web of Science, MEDLINE, and ProQuest. Eligible studies included smartphones, mHealth apps, wearables, and inequality indicators across 4 mHealth phases: access, adoption, adherence, and maintenance. Excluded studies were nonpeer-reviewed, opinion-based, or not in English. Extracted data included study characteristics, target populations, health outcomes, and inequality factors like age, gender, socioeconomic status, and digital literacy. Factors were categorized using a digital health equity framework (biological, behavioral, sociocultural, digital, health care system, and physical domains). Meta-analyses were performed using a random-effects model for factors reported in at least three studies, with heterogeneity assessed by the I² statistic. RESULTS: Among 1990 studies, 62 studies met the inclusion criteria, and 30 studies underwent meta-analysis. The phases of mHealth utilization were access (n=23, 37%), adoption (n=47, 76%), adherence (n=9, 15%), and maintenance (n=2, 3%). Meta-analysis showed older age was negatively associated with mHealth adoption (odds ratio [OR] 0.47, 95% CI 0.23-0.93), while higher education and income were positively associated in both access and adoption phases. Employment showed significant associations in the access phase (OR 1.49, 95% CI 1.08-2.05), whereas comorbidities (OR 1.39, 95% CI 1.03-1.86) and private insurance (OR 1.63, 95% CI 1.07-2.48) were significantly associated with adoption of mHealth. Women (OR 1.24, 95% CI 1.06-1.45) and physically active individuals (OR 1.64, 95% CI 1.07-2.50) were more likely to adopt mHealth. CONCLUSIONS: The conceptual framework outlined in this study highlights the multifaceted nature of mHealth utilization across all the phases of mHealth engagement. To address these inequalities, tailored and personalized interventions are required at each phase of mHealth utilization. Targeted efforts can enhance digital access for older and low-income adults while promoting engagement through education, insurance support, and healthy behaviors, thereby promoting equitable and effective mHealth use. By recognizing the interconnectedness of these domains, policy makers and health care stakeholders can design interventions that not only address the phase-specific barriers but also bridge broader inequalities in health care access and engagement.
背景:移动健康(mHealth)有望改善患者护理,但在其使用过程中的人员流失仍是一个主要障碍。低留存率限制了其潜在影响,而获取或采用移动健康的障碍在不同人群和国家中各不相同。移动健康利用方面的这些差异可能会加剧健康不平等,导致数字健康鸿沟。 目的:我们旨在进行一项系统综述和荟萃分析,以调查在移动健康利用的不同实施阶段(包括获取、采用、坚持和维持)中与不平等相关的因素。 方法:这项系统综述和荟萃分析使用包括PubMed、科学网、MEDLINE和ProQuest在内的数据库,分析了2000年至2024年5月30日的移动健康研究。符合条件的研究包括智能手机、移动健康应用程序、可穿戴设备,以及移动健康4个阶段(获取、采用、坚持和维持)的不平等指标。排除的研究包括未经同行评审的、基于观点的或非英文的研究。提取的数据包括研究特征、目标人群、健康结果,以及年龄、性别、社会经济地位和数字素养等不平等因素。使用数字健康公平框架(生物、行为、社会文化、数字、医疗保健系统和物理领域)对因素进行分类。对至少三项研究报告的因素使用随机效应模型进行荟萃分析,通过I²统计量评估异质性。 结果:在1990项研究中,62项研究符合纳入标准,30项研究进行了荟萃分析。移动健康利用阶段包括获取(n = 23,37%)、采用(n = 47,76%)、坚持(n = 9,15%)和维持(n = 2,3%)。荟萃分析表明,年龄较大与移动健康采用呈负相关(优势比[OR] 0.47,95%置信区间0.23 - 0.93),而在获取和采用阶段,高等教育和高收入与移动健康采用呈正相关。就业在获取阶段显示出显著关联(OR 1.49,95%置信区间1.08 - 2.05),而合并症(OR 1.39,95%置信区间1.03 - 1.86)和私人保险(OR 1.63,95%置信区间1.07 - 2.48)与移动健康采用显著相关。女性(OR 1.24,95%置信区间1.06 - 1.45)和身体活跃的个体(OR 1.64,95%置信区间1.07 - 2.50)更有可能采用移动健康。 结论:本研究中概述的概念框架突出了移动健康参与所有阶段中移动健康利用的多方面性质。为了解决这些不平等问题,在移动健康利用的每个阶段都需要量身定制的个性化干预措施。有针对性的努力可以增加老年人和低收入成年人的数字接入,同时通过教育、保险支持和健康行为促进参与,从而促进移动健康的公平有效使用。通过认识到这些领域的相互联系,政策制定者和医疗保健利益相关者可以设计出不仅能解决特定阶段障碍,还能弥合医疗保健获取和参与方面更广泛不平等的干预措施。
J Med Internet Res. 2025-8-14
Cochrane Database Syst Rev. 2025-6-11
Cochrane Database Syst Rev. 2014-5-5
Health Soc Care Deliv Res. 2025-5-21
Cochrane Database Syst Rev. 2015-7-27
JMIR Mhealth Uhealth. 2024-1-5
J Med Internet Res. 2023-7-25
JMIR Form Res. 2023-6-20
Arch Phys Med Rehabil. 2023-10
Npj Ment Health Res. 2023