MAP-Centre for Urban Health Solutions, St. Michael's Hospital, Unity Health Toronto.
Institute of Medical Sciences, University of Toronto, Toronto, Ontario.
AIDS. 2021 Jun 1;35(7):1113-1125. doi: 10.1097/QAD.0000000000002826.
HIV pre-exposure prophylaxis (PrEP) may change serosorting patterns. We examined the influence of serosorting on the population-level HIV transmission impact of PrEP, and how impact could change if PrEP users stopped serosorting.
We developed a compartmental HIV transmission model parameterized with bio-behavioural and HIV surveillance data among MSM in Canada.
We separately fit the model with serosorting and without serosorting [counterfactual; sero-proportionate mixing (random partner-selection proportional to availability by HIV status)], and reproduced stable HIV epidemics with HIV-prevalence 10.3-24.8%, undiagnosed fraction 4.9-15.8% and treatment coverage 82.5-88.4%. We simulated PrEP-intervention reaching stable pre-specified coverage by year-one and compared absolute difference in relative HIV-incidence reduction 10 years post-intervention (PrEP-impact) between models with serosorting vs. sero-proportionate mixing; and counterfactual scenarios when PrEP users immediately stopped vs. continued serosorting. We examined sensitivity of results to PrEP-effectiveness (44-99%; reflecting varying dosing or adherence levels) and coverage (10-50%).
Models with serosorting predicted a larger PrEP-impact than models with sero-proportionate mixing under all PrEP-effectiveness and coverage assumptions [median (interquartile range): 8.1% (5.5-11.6%)]. PrEP users' stopping serosorting reduced PrEP-impact compared with when PrEP users continued serosorting: reductions in PrEP-impact were minimal [2.1% (1.4-3.4%)] under high PrEP-effectiveness (86-99%); however, could be considerable [10.9% (8.2-14.1%)] under low PrEP effectiveness (44%) and high coverage (30-50%).
Models assuming sero-proportionate mixing may underestimate population-level HIV-incidence reductions due to PrEP. PrEP-mediated changes in serosorting could lead to programmatically important reductions in PrEP-impact under low PrEP-effectiveness. Our findings suggest the need to monitor sexual mixing patterns to inform PrEP implementation and evaluation.
艾滋病毒暴露前预防(PrEP)可能改变血清学分类模式。我们研究了血清学分类对 PrEP 对人群层面 HIV 传播影响的影响,以及如果 PrEP 用户停止血清学分类,影响会如何变化。
我们使用加拿大男男性行为者的生物行为和 HIV 监测数据,开发了一个包含 HIV 传播的隔室模型。
我们分别使用血清学分类和不使用血清学分类(对照;血清比例混合(根据 HIV 状态按供应情况随机选择性伴侣))拟合模型,并使用 HIV 流行率为 10.3-24.8%、未确诊率为 4.9-15.8%和治疗覆盖率为 82.5-88.4%的模型再现稳定的 HIV 流行。我们模拟了 PrEP 干预措施,在第一年达到稳定的预定义覆盖率,并比较了血清学分类模型与血清比例混合模型在干预后 10 年相对 HIV 发病率降低的绝对差异(PrEP 效果);以及当 PrEP 用户立即停止与继续血清学分类时的对照情况。我们研究了 PrEP 效果(44-99%;反映不同的剂量或依从水平)和覆盖率(10-50%)对结果的敏感性。
在所有 PrEP 效果和覆盖率假设下,血清学分类模型预测的 PrEP 效果大于血清比例混合模型[中位数(四分位距):8.1%(5.5-11.6%)]。与 PrEP 用户继续血清学分类相比,PrEP 用户停止血清学分类会降低 PrEP 的效果:在高 PrEP 效果(86-99%)下,降低幅度较小[2.1%(1.4-3.4%)];然而,在低 PrEP 效果(44%)和高覆盖率(30-50%)下,降低幅度可能较大[10.9%(8.2-14.1%)]。
假设血清比例混合的模型可能低估了 PrEP 导致的人群层面 HIV 发病率降低。PrEP 介导的血清学分类变化可能导致 PrEP 效果在低 PrEP 效果下显著降低。我们的研究结果表明,需要监测性混合模式,为 PrEP 的实施和评估提供信息。