Race Alan M, Sutton Daniel, Hamm Gregory, Maglennon Gareth, Morton Jennifer P, Strittmatter Nicole, Campbell Andrew, Sansom Owen J, Wang Yinhai, Barry Simon T, Takáts Zoltan, Goodwin Richard J A, Bunch Josephine
Imaging and AI, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
Oncology Safety, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
Anal Chem. 2021 Feb 16;93(6):3061-3071. doi: 10.1021/acs.analchem.0c02726. Epub 2021 Feb 3.
An ever-increasing array of imaging technologies are being used in the study of complex biological samples, each of which provides complementary, occasionally overlapping information at different length scales and spatial resolutions. It is important to understand the information provided by one technique in the context of the other to achieve a more holistic overview of such complex samples. One way to achieve this is to use annotations from one modality to investigate additional modalities. For microscopy-based techniques, these annotations could be manually generated using digital pathology software or automatically generated by machine learning (including deep learning) methods. Here, we present a generic method for using annotations from one microscopy modality to extract information from complementary modalities. We also present a fast, general, multimodal registration workflow [evaluated on multiple mass spectrometry imaging (MSI) modalities, matrix-assisted laser desorption/ionization, desorption electrospray ionization, and rapid evaporative ionization mass spectrometry] for automatic alignment of complex data sets, demonstrating an order of magnitude speed-up compared to previously published work. To demonstrate the power of the annotation transfer and multimodal registration workflows, we combine MSI, histological staining (such as hematoxylin and eosin), and deep learning (automatic annotation of histology images) to investigate a pancreatic cancer mouse model. Neoplastic pancreatic tissue regions, which were histologically indistinguishable from one another, were observed to be metabolically different. We demonstrate the use of the proposed methods to better understand tumor heterogeneity and the tumor microenvironment by transferring machine learning results freely between the two modalities.
越来越多的成像技术被用于复杂生物样本的研究,每种技术都能在不同的长度尺度和空间分辨率下提供互补的、偶尔重叠的信息。在其他技术的背景下理解一种技术所提供的信息,对于全面了解此类复杂样本非常重要。实现这一点的一种方法是使用一种模态的注释来研究其他模态。对于基于显微镜的技术,这些注释可以使用数字病理软件手动生成,也可以通过机器学习(包括深度学习)方法自动生成。在这里,我们提出了一种通用方法,用于使用一种显微镜模态的注释从互补模态中提取信息。我们还提出了一种快速、通用的多模态配准工作流程(在多种质谱成像(MSI)模态、基质辅助激光解吸/电离、解吸电喷雾电离和快速蒸发电离质谱上进行了评估),用于复杂数据集的自动对齐,与之前发表的工作相比,速度提高了一个数量级。为了证明注释转移和多模态配准工作流程的强大功能,我们结合了MSI、组织学染色(如苏木精和伊红)和深度学习(组织学图像的自动注释)来研究一种胰腺癌小鼠模型。观察到在组织学上无法区分的肿瘤性胰腺组织区域在代谢上存在差异。我们展示了使用所提出的方法通过在两种模态之间自由转移机器学习结果来更好地理解肿瘤异质性和肿瘤微环境。