Desbenoit N, Walch A, Spengler B, Brunelle A, Römpp A
Chair of Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Giessen, Germany.
Rapid Commun Mass Spectrom. 2018 Jan 30;32(2):159-166. doi: 10.1002/rcm.8022.
Mass spectrometry imaging (MSI) is a powerful tool for mapping the surface of a sample. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) offer complementary capabilities. Here, we present a workflow to apply both techniques to a single tissue section and combine the resulting data for the example of human colon cancer tissue.
Following cryo-sectioning, images were acquired using the high spatial resolution (1 μm pixel size) provided by TOF-SIMS. The same section was then coated with a para-nitroaniline matrix and images were acquired using AP-MALDI coupled to an Orbitrap mass spectrometer, offering high mass resolution, high mass accuracy and tandem mass spectrometry (MS/MS) capabilities. Datasets provided by both mass spectrometers were converted into the open and vendor-independent imzML file format and processed with the open-source software MSiReader.
The TOF-SIMS and AP-MALDI mass spectra show strong signals of fatty acids, cholesterol, phosphatidylcholine and sphingomyelin. We showed a high correlation between the fatty acid ions detected with TOF-SIMS in negative ion mode and the phosphatidylcholine ions detected with AP-MALDI in positive ion mode using a similar setting for visualization. Histological staining on the same section allowed the identification of the anatomical structures and their correlation with the ion images.
This multimodal approach using two MSI platforms shows an excellent complementarity for the localization and identification of lipids. The spatial resolution of both systems is at or close to cellular dimensions, and thus spatial correlation can only be obtained if the same tissue section is analyzed sequentially. Data processing based on imzML allows a real correlation of the imaging datasets provided by these two technologies and opens the way for a more complete molecular view of the anatomical structures of biological tissues.
质谱成像(MSI)是用于绘制样品表面图谱的强大工具。飞行时间二次离子质谱(TOF-SIMS)和大气压基质辅助激光解吸/电离(AP-MALDI)具有互补功能。在此,我们展示了一种工作流程,将这两种技术应用于单个组织切片,并以人类结肠癌组织为例合并所得数据。
冷冻切片后,使用TOF-SIMS提供的高空间分辨率(1μm像素大小)获取图像。然后在同一切片上涂覆对硝基苯胺基质,并使用与轨道阱质谱仪联用的AP-MALDI获取图像,该联用方式具有高质量分辨率、高质量准确度和串联质谱(MS/MS)功能。两台质谱仪提供的数据集均转换为开放且与供应商无关的imzML文件格式,并使用开源软件MSiReader进行处理。
TOF-SIMS和AP-MALDI质谱显示出脂肪酸、胆固醇、磷脂酰胆碱和鞘磷脂的强信号。我们发现在负离子模式下用TOF-SIMS检测到的脂肪酸离子与在正离子模式下用AP-MALDI检测到的磷脂酰胆碱离子之间具有高度相关性,采用了类似的可视化设置。同一切片上的组织学染色有助于识别解剖结构及其与离子图像的相关性。
这种使用两个MSI平台的多模态方法在脂质的定位和识别方面显示出极佳的互补性。两个系统的空间分辨率均达到或接近细胞尺寸,因此只有对同一组织切片进行顺序分析才能获得空间相关性。基于imzML的数据处理能够实现这两种技术提供的成像数据集的真正关联,为更全面地了解生物组织解剖结构的分子情况开辟了道路。