Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States.
ACS Synth Biol. 2021 Feb 19;10(2):379-390. doi: 10.1021/acssynbio.0c00566. Epub 2021 Feb 3.
Generating and characterizing immunoreagents to enable studies of novel emerging viruses is an area where ensembles of synthetic genes, recombinant antibody pipelines, and modular antibody-reporter fusion proteins can respond rapidly. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread through the global population causing widespread morbidity, mortality, and socioeconomic chaos. Using SARS-CoV-2 as our model and starting with a gBlocks encoded nucleocapsid (N) gene, we purified recombinant protein from , to serve as bait for selecting semisynthetic nanobodies from our Nomad single-pot library. Clones were isolated in days and first fused to Gaussia luciferase to determine EC in the tens of nM range, and second fused to the ascorbate peroxidase derivative APEX2 for sensitive detection of SARS-CoV-2 infected cells. To generate inherently fluorescent immunoreagents, we introduce novel periplasmic sdAb fusions made with mNeonGreen and mScarlet-I, which were produced at milligram amounts. The fluorescent fusion proteins enabled concise visualization of SARS-CoV-2 N in the cytoplasm but not in the nucleus 24 h post infection, akin to the distribution of SARS-CoV N, thereby validating these useful imaging tools. SdAb reactivity appeared specific to SARS-CoV-2 with very much weaker binding to SARS-CoV, and no noticeable cross-reactivity to a panel of overexpressed human codon optimized N proteins from other CoV. High periplasmic expression levels and immortalization of the nanobody constructs guarantees a cost-effective and reliable source of SARS-CoV-2 immunoreagents. Our proof-of-principle study should be applicable to known and newly emerging CoV to broaden the tools available for their analysis and help safeguard human health in a more proactive than reactive manner.
生成和表征免疫试剂以实现对新型新兴病毒的研究是一个领域,其中合成基因的集合、重组抗体管道和模块化抗体报告融合蛋白可以快速响应。严重急性呼吸系统综合症冠状病毒 2 (SARS-CoV-2) 继续在全球人群中传播,造成广泛的发病率、死亡率和社会经济混乱。我们以 SARS-CoV-2 为模型,从 gBlocks 编码的核衣壳 (N) 基因开始,从我们的 Nomad 单一锅库中纯化重组蛋白作为诱饵,用于选择半合成纳米抗体。克隆在数天内被分离出来,首先与高斯荧光素酶融合,以确定 EC 在数十纳摩尔范围内,其次与抗坏血酸过氧化物酶衍生物 APEX2 融合,用于敏感检测 SARS-CoV-2 感染的细胞。为了生成固有荧光免疫试剂,我们引入了新型周质 sdAb 融合蛋白,分别用 mNeonGreen 和 mScarlet-I 制成,可以毫克级生产。荧光融合蛋白能够简洁地可视化 SARS-CoV-2 N 在细胞质中的分布,但不在细胞核中,这与 SARS-CoV N 的分布相似,从而验证了这些有用的成像工具。sdAb 反应性似乎对 SARS-CoV-2 具有特异性,与 SARS-CoV 的结合非常弱,并且与来自其他 CoV 的过表达人密码子优化 N 蛋白的面板没有明显的交叉反应性。sdAb 的高周质表达水平和永生化构建体保证了 SARS-CoV-2 免疫试剂的成本效益和可靠性来源。我们的原理验证研究应该适用于已知和新出现的 CoV,以扩大对它们进行分析的工具,并以更主动而不是被动的方式帮助保护人类健康。