Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada.
Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada.
Biochem Cell Biol. 2021 Aug;99(4):397-402. doi: 10.1139/bcb-2020-0593. Epub 2021 Feb 3.
This review describes the contribution of basic research on phage-bacteria interactions to the understanding of CRISPR-Cas systems and their various applications. It focuses on the natural function of CRISPR-Cas systems as adaptive defense mechanisms against mobile genetic elements such as bacteriophage genomes and plasmids. Some of the advances in the characterization of the type II-A CRISPR-Cas system of and led to the development of the CRISPR-Cas9 genome-editing technology. We mostly discuss the 3 stages of the CRISPR-Cas system in , namely the adaptation stage, which is unique to this resistance mechanism; the CRISPR RNA biogenesis; and the DNA-cutting activity in the interference stage to protect bacteria against phages. Finally, we look into applications of CRISPR-Cas in microbiology, including overcoming limitations in genome editing.
这篇综述描述了噬菌体-细菌相互作用的基础研究对 CRISPR-Cas 系统及其各种应用的理解的贡献。它侧重于 CRISPR-Cas 系统作为适应性防御机制的自然功能,以抵御移动遗传元件,如噬菌体基因组和质粒。对 和 中 II-A 型 CRISPR-Cas 系统的特征的一些进展导致了 CRISPR-Cas9 基因组编辑技术的发展。我们主要讨论了 的 CRISPR-Cas 系统的 3 个阶段,即适应阶段,这是该抵抗机制所特有的;CRISPR RNA 生物发生;以及干扰阶段中的 DNA 切割活性,以保护细菌免受噬菌体的侵害。最后,我们研究了 CRISPR-Cas 在微生物学中的应用,包括克服基因组编辑的限制。