Département de Biochimie, de Microbiologie, et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, Quebec, Canada.
Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, Quebec, Canada.
mSphere. 2020 Jun 24;5(3):e00235-20. doi: 10.1128/mSphere.00235-20.
and its virulent phages are important members of the human oral microbiota. is also the primary causal agent of dental caries. To survive in this ecological niche, must encode phage defense mechanisms, which include CRISPR-Cas systems. Here, we describe the CRISPR-Cas type II-A system of strain P42S, which was found to display natural adaptation and interference activity in response to phage infection and plasmid transformation. Newly acquired spacers were integrated both at the 5' end of the CRISPR locus and ectopically. In comparisons of the genes of P42S to those of other strains of , , , and appear to be highly conserved within the species. However, more diversity was observed with While the nuclease domains of Cas9 (SmCas9) are conserved, the C terminus of the protein, including the protospacer adjacent motif (PAM) recognition domain, is less conserved. In support of these findings, we experimentally demonstrated that the PAMs associated with SmCas9 of strain P42S are NAA and NGAA. These PAMs are different from those previously reported for the CRISPR-Cas system of the model strain UA159. This study illustrates the diversity of CRISPR-Cas type II-A systems that can be found within the same bacterial species. CRISPR-Cas is one of the mechanisms used by bacteria to defend against viral predation. Increasing our knowledge of the biology and diversity of CRISPR-Cas systems will also improve our understanding of virus-bacterium interactions. As CRISPR-Cas systems acquiring novel immunities under laboratory conditions are rare, strain P42S provides an alternative model to study the adaptation step, which is still the least understood step in CRISPR-Cas biology. Furthermore, the availability of a natural Cas9 protein recognizing an AT-rich PAM opens up new avenues for genome editing purposes.
和其毒性噬菌体是人类口腔微生物群的重要成员。也是龋齿的主要病原体。为了在这个生态位中生存,必须编码噬菌体防御机制,其中包括 CRISPR-Cas 系统。在这里,我们描述了 菌株 P42S 的 CRISPR-Cas 型 II-A 系统,该系统被发现对噬菌体感染和质粒转化表现出自然适应性和干扰活性。新获得的间隔区被整合到 CRISPR 基因座的 5'端和异位。在比较 P42S 的 基因与其他 菌株的 基因时,发现 在种内高度保守。然而,在 中观察到更多的多样性。虽然 Cas9(SmCas9)的核酸酶结构域是保守的,但该蛋白的 C 末端,包括邻近基序(PAM)识别结构域,保守性较低。这些发现得到了实验的支持,我们实验证明了与 P42S 菌株 SmCas9 相关的 PAMs 是 NAA 和 NGAA。这些 PAMs 与先前报道的模型菌株 UA159 的 CRISPR-Cas 系统的 PAMs 不同。这项研究说明了同一细菌物种中可以发现的 CRISPR-Cas 型 II-A 系统的多样性。CRISPR-Cas 是细菌抵御病毒捕食的机制之一。增加我们对 CRISPR-Cas 系统生物学和多样性的了解也将提高我们对病毒-细菌相互作用的理解。由于在实验室条件下获得新免疫性的 CRISPR-Cas 系统很少见,因此 P42S 菌株为研究适应性步骤提供了替代模型,这仍然是 CRISPR-Cas 生物学中最不为人知的步骤。此外,具有识别富含 AT 的 PAM 的天然 Cas9 蛋白的可用性为基因组编辑目的开辟了新途径。