Suppr超能文献

OCLSTM:用于蛋白质二级结构预测的优化卷积和长短期记忆神经网络模型。

OCLSTM: Optimized convolutional and long short-term memory neural network model for protein secondary structure prediction.

机构信息

School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.

出版信息

PLoS One. 2021 Feb 3;16(2):e0245982. doi: 10.1371/journal.pone.0245982. eCollection 2021.

Abstract

Protein secondary structure prediction is extremely important for determining the spatial structure and function of proteins. In this paper, we apply an optimized convolutional neural network and long short-term memory neural network models to protein secondary structure prediction, which is called OCLSTM. We use an optimized convolutional neural network to extract local features between amino acid residues. Then use the bidirectional long short-term memory neural network to extract the remote interactions between the internal residues of the protein sequence to predict the protein structure. Experiments are performed on CASP10, CASP11, CASP12, CB513, and 25PDB datasets, and the good performance of 84.68%, 82.36%, 82.91%, 84.21% and 85.08% is achieved respectively. Experimental results show that the model can achieve better results.

摘要

蛋白质二级结构预测对于确定蛋白质的空间结构和功能至关重要。在本文中,我们应用优化的卷积神经网络和长短时记忆神经网络模型(OCLSTM)进行蛋白质二级结构预测。我们使用优化的卷积神经网络提取氨基酸残基之间的局部特征。然后使用双向长短时记忆神经网络提取蛋白质序列内部残基之间的远程相互作用来预测蛋白质结构。在 CASP10、CASP11、CASP12、CB513 和 25PDB 数据集上进行了实验,分别取得了 84.68%、82.36%、82.91%、84.21%和 85.08%的优异性能。实验结果表明,该模型能够取得更好的预测结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/511f/7857624/6da94b1557b2/pone.0245982.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验