Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
Bioresour Technol. 2021 Apr;326:124779. doi: 10.1016/j.biortech.2021.124779. Epub 2021 Jan 29.
Aerobic denitrifying bacteria were widely reported in different nitrogen polluted aquatic ecosystem. However, the aerobic denitrification characteristics of actinomycete were not well understood. Here, the actinomycete strain XD-11-6-2 was isolated from reservoir and identified as Streptomyces sp. XD-11-6-2 by DNA sequencing. Strain XD-11-6-2 removed 90.34% of total organic carbon and 93.66% of total nitrogen under aerobic condition. A total of 77.87% of nitrogen was removed as a gaseous product, and 15.67% of nitrogen was converted into biomass. Biolog combined with network model indicated that strain XD-11-6-2 could use six types of carbon sources, and exhibit outstanding capacity to metabolize diverse carbon sources. Moreover, the highest nitrate and total nitrogen removal efficiencies of raw water were 72.29% and 74.86%, respectively. In general, these results provide new insights to understand the potential of actinomycetes in treating micro-polluted water.
好的,请提供需要翻译的文本。