Suppr超能文献

聚己内酯纳米颗粒有望成为新型纳米药物中纳米载体的候选材料。

Polycaprolactone Nanoparticles as Promising Candidates for Nanocarriers in Novel Nanomedicines.

作者信息

Łukasiewicz Sylwia, Mikołajczyk Antoni, Błasiak Ewa, Fic Ewelina, Dziedzicka-Wasylewska Marta

机构信息

Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.

出版信息

Pharmaceutics. 2021 Feb 1;13(2):191. doi: 10.3390/pharmaceutics13020191.

Abstract

An investigation of the interactions between bio-polymeric nanoparticles (NPs) and the RAW 264.7 mouse murine macrophage cell line has been presented. The cell viability, immunological response, and endocytosis efficiency of NPs were studied. Biopolymeric NPs were synthesized from a nanoemulsion using the phase inversion composition (PIC) technique. The two types of biopolymeric NPs that were obtained consisted of a biocompatible polymer, polycaprolactone (PCL), either with or without its copolymer with poly(ethylene glycol) (PCL-b-PEG). Both types of synthesized PCL NPs passed the first in vitro quality assessments as potential drug nanocarriers. Non-pegylated PCL NPs were internalized more effectively and the clathrin-mediated pathway was involved in that process. The investigated NPs did not affect the viability of the cells and did not elicit an immune response in the RAW 264.7 cells (neither a significant increase in the expression of genes encoding pro-inflammatory cytokines nor NO (nitric oxide) production were observed). It may be concluded that the synthesized NPs are promising candidates as nanocarriers of therapeutic compounds.

摘要

本文介绍了对生物聚合物纳米颗粒(NPs)与RAW 264.7小鼠巨噬细胞系之间相互作用的研究。研究了NPs的细胞活力、免疫反应和内吞效率。使用相转变组成(PIC)技术从纳米乳液中合成了生物聚合物NPs。所获得的两种类型的生物聚合物NPs均由生物相容性聚合物聚己内酯(PCL)组成,一种含有与聚乙二醇(PCL-b-PEG)的共聚物,另一种不含。两种合成的PCL NPs均通过了作为潜在药物纳米载体的首次体外质量评估。未聚乙二醇化的PCL NPs内化更有效,且网格蛋白介导的途径参与了该过程。所研究的NPs不影响细胞活力,也不会在RAW 264.7细胞中引发免疫反应(未观察到编码促炎细胞因子的基因表达显著增加,也未观察到一氧化氮(NO)产生)。可以得出结论,合成的NPs作为治疗化合物的纳米载体具有很大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4637/7912766/9a75e0d111c4/pharmaceutics-13-00191-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验