Suppr超能文献

基于带偏置项和最大似然估计准则的神经网络的盲源分离方法。

Blind Source Separation Method Based on Neural Network with Bias Term and Maximum Likelihood Estimation Criterion.

机构信息

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.

出版信息

Sensors (Basel). 2021 Feb 1;21(3):973. doi: 10.3390/s21030973.

Abstract

Convergence speed and steady-state source separation performance are crucial for enable engineering applications of blind source separation methods. The modification of the loss function of the blind source separation algorithm and optimization of the algorithm to improve its performance from the perspective of neural networks (NNs) is a novel concept. In this paper, a blind source separation method, combining the maximum likelihood estimation criterion and an NN with a bias term, is proposed. The method adds L2 regularization terms for weights and biases to the loss function to improve the steady-state performance and designs a novel optimization algorithm with a dual acceleration strategy to improve the convergence speed of the algorithm. The dual acceleration strategy of the proposed optimization algorithm smooths and speeds up the originally steep, slow gradient descent in the parameter space. Compared with competing algorithms, this strategy improves the convergence speed of the algorithm by four times and the steady-state performance index by 96%. In addition, to verify the source separation performance of the algorithm more comprehensively, the simulation data with prior knowledge and the measured data without prior knowledge are used to verify the separation performance. Both simulation results and validation results based on measured data indicate that the new algorithm not only has better convergence and steady-state performance than conventional algorithms, but it is also more suitable for engineering applications.

摘要

收敛速度和稳态源分离性能对于盲源分离方法的工程应用至关重要。从神经网络(NN)的角度出发,修改盲源分离算法的损失函数并优化算法以提高其性能是一个新颖的概念。本文提出了一种盲源分离方法,将最大似然估计准则与具有偏差项的神经网络相结合。该方法在损失函数中添加了权重和偏差的 L2 正则化项,以提高稳态性能,并设计了一种具有双加速策略的新型优化算法,以提高算法的收敛速度。所提出的优化算法的双加速策略平滑并加快了参数空间中原本陡峭、缓慢的梯度下降。与竞争算法相比,该策略将算法的收敛速度提高了 4 倍,稳态性能指标提高了 96%。此外,为了更全面地验证算法的源分离性能,使用具有先验知识的仿真数据和无先验知识的实测数据验证分离性能。基于仿真数据和实测数据的验证结果均表明,新算法不仅比传统算法具有更好的收敛性和稳态性能,而且更适用于工程应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daf9/7867157/49f4fdca737c/sensors-21-00973-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验