Suppr超能文献

用于多输入多输出完全非线性动态模型的神经计算增强参数估计

Neural Computing Enhanced Parameter Estimation for Multi-Input and Multi-Output Total Non-Linear Dynamic Models.

作者信息

Liu Longlong, Ma Di, Azar Ahmad Taher, Zhu Quanmin

机构信息

School of Mathematical Sciences, Ocean University of China, Qingdao 266000, China.

Robotics and Internet-of-Things Lab (RIOTU), Prince Sultan University, Riyadh 11586, Saudi Arabia.

出版信息

Entropy (Basel). 2020 Apr 30;22(5):510. doi: 10.3390/e22050510.

Abstract

In this paper, a gradient descent algorithm is proposed for the parameter estimation of multi-input and multi-output (MIMO) total non-linear dynamic models. Firstly, the MIMO total non-linear model is mapped to a non-completely connected feedforward neural network, that is, the parameters of the total non-linear model are mapped to the connection weights of the neural network. Then, based on the minimization of network error, a weight-updating algorithm, that is, an estimation algorithm of model parameters, is proposed with the convergence conditions of a non-completely connected feedforward network. In further determining the variables of the model set, a method of model structure detection is proposed for selecting a group of important items from the whole variable candidate set. In order to verify the usefulness of the parameter identification process, we provide a virtual bench test example for the numerical analysis and user-friendly instructions for potential applications.

摘要

本文提出了一种用于多输入多输出(MIMO)全非线性动态模型参数估计的梯度下降算法。首先,将MIMO全非线性模型映射到一个非完全连接的前馈神经网络,即全非线性模型的参数被映射到神经网络的连接权重上。然后,基于网络误差的最小化,提出了一种权重更新算法,即模型参数的估计算法,并给出了非完全连接前馈网络的收敛条件。在进一步确定模型集的变量时,提出了一种模型结构检测方法,用于从整个变量候选集中选择一组重要项。为了验证参数识别过程的有效性,我们提供了一个虚拟台架测试示例用于数值分析,并为潜在应用提供了用户友好的说明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b36c/7517001/769ee3045fa5/entropy-22-00510-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验