Suppr超能文献

基于祖先信息单核苷酸多态性的欧洲蜜蜂权威亚种诊断工具。

Authoritative subspecies diagnosis tool for European honey bees based on ancestry informative SNPs.

作者信息

Momeni Jamal, Parejo Melanie, Nielsen Rasmus O, Langa Jorge, Montes Iratxe, Papoutsis Laetitia, Farajzadeh Leila, Bendixen Christian, Căuia Eliza, Charrière Jean-Daniel, Coffey Mary F, Costa Cecilia, Dall'Olio Raffaele, De la Rúa Pilar, Drazic M Maja, Filipi Janja, Galea Thomas, Golubovski Miroljub, Gregorc Ales, Grigoryan Karina, Hatjina Fani, Ilyasov Rustem, Ivanova Evgeniya, Janashia Irakli, Kandemir Irfan, Karatasou Aikaterini, Kekecoglu Meral, Kezic Nikola, Matray Enikö Sz, Mifsud David, Moosbeckhofer Rudolf, Nikolenko Alexei G, Papachristoforou Alexandros, Petrov Plamen, Pinto M Alice, Poskryakov Aleksandr V, Sharipov Aglyam Y, Siceanu Adrian, Soysal M Ihsan, Uzunov Aleksandar, Zammit-Mangion Marion, Vingborg Rikke, Bouga Maria, Kryger Per, Meixner Marina D, Estonba Andone

机构信息

Eurofins Genomics Europe Genotyping A/S (EFEG), (Former GenoSkan A/S), Aarhus, Denmark.

Laboratory Genetics, University of the Basque Country (UPV/EHU), Leioa, Bilbao, Spain.

出版信息

BMC Genomics. 2021 Feb 3;22(1):101. doi: 10.1186/s12864-021-07379-7.

Abstract

BACKGROUND

With numerous endemic subspecies representing four of its five evolutionary lineages, Europe holds a large fraction of Apis mellifera genetic diversity. This diversity and the natural distribution range have been altered by anthropogenic factors. The conservation of this natural heritage relies on the availability of accurate tools for subspecies diagnosis. Based on pool-sequence data from 2145 worker bees representing 22 populations sampled across Europe, we employed two highly discriminative approaches (PCA and F) to select the most informative SNPs for ancestry inference.

RESULTS

Using a supervised machine learning (ML) approach and a set of 3896 genotyped individuals, we could show that the 4094 selected single nucleotide polymorphisms (SNPs) provide an accurate prediction of ancestry inference in European honey bees. The best ML model was Linear Support Vector Classifier (Linear SVC) which correctly assigned most individuals to one of the 14 subspecies or different genetic origins with a mean accuracy of 96.2% ± 0.8 SD. A total of 3.8% of test individuals were misclassified, most probably due to limited differentiation between the subspecies caused by close geographical proximity, or human interference of genetic integrity of reference subspecies, or a combination thereof.

CONCLUSIONS

The diagnostic tool presented here will contribute to a sustainable conservation and support breeding activities in order to preserve the genetic heritage of European honey bees.

摘要

背景

欧洲拥有五个进化谱系中的四个谱系的众多地方特有亚种,拥有很大一部分西方蜜蜂的遗传多样性。这种多样性和自然分布范围已因人为因素而改变。保护这一自然遗产依赖于准确的亚种诊断工具。基于来自代表欧洲各地22个种群的2145只工蜂的池测序数据,我们采用了两种高度判别性的方法(主成分分析和F检验)来选择用于祖先推断的最具信息性的单核苷酸多态性(SNP)。

结果

使用监督式机器学习(ML)方法和一组3896个基因分型个体,我们可以表明,所选择的4094个单核苷酸多态性(SNP)能够准确预测欧洲蜜蜂的祖先推断。最佳的ML模型是线性支持向量分类器(Linear SVC),它能将大多数个体正确地分配到14个亚种之一或不同的遗传起源,平均准确率为96.2%±0.8标准差。共有3.8%的测试个体被误分类,这很可能是由于地理距离相近导致亚种之间的分化有限、参考亚种的遗传完整性受到人为干扰或两者兼而有之。

结论

这里提出的诊断工具将有助于可持续保护并支持育种活动,以保护欧洲蜜蜂的遗传遗产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f3/7860026/68f1bcdc7ad1/12864_2021_7379_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验