Puerto Rico Science, Technology and Research Trust, San Juan, PR, 00927, USA.
Centre for Life Sciences, Mahindra University, Bahadurpally, Hyderabad, 500043, India.
BMC Bioinformatics. 2024 Aug 27;25(1):278. doi: 10.1186/s12859-024-05776-9.
Honey bees are the principal commercial pollinators. Along with other arthropods, they are increasingly under threat from anthropogenic factors such as the incursion of invasive honey bee subspecies, pathogens and parasites. Better tools are needed to identify bee subspecies. Genomic data for economic and ecologically important organisms is increasing, but in its basic form its practical application to address ecological problems is limited.
We introduce HBeeID a means to identify honey bees. The tool utilizes a knowledge-based network and diagnostic SNPs identified by discriminant analysis of principle components and hierarchical agglomerative clustering. Tests of HBeeID showed that it identifies African, Americas-Africanized, Asian, and European honey bees with a high degree of certainty even when samples lack the full 272 SNPs of HBeeID. Its prediction capacity decreases with highly admixed samples.
HBeeID is a high-resolution genomic, SNP based tool, that can be used to identify honey bees and screen species that are invasive. Its flexible design allows for future improvements via sample data additions from other localities.
蜜蜂是主要的商业授粉媒介。与其他节肢动物一样,它们正日益受到人为因素的威胁,如入侵的蜜蜂亚种、病原体和寄生虫的入侵。需要更好的工具来识别蜜蜂亚种。经济和生态上重要的生物的基因组数据正在增加,但在其基本形式下,其实际应用于解决生态问题的能力是有限的。
我们引入了 HBeeID,这是一种识别蜜蜂的方法。该工具利用基于知识的网络和通过主成分判别分析和层次聚类识别的诊断 SNP。HBeeID 的测试表明,即使在样本缺乏 HBeeID 的全部 272 个 SNP 的情况下,它也能高度确定地识别非洲、美洲-非洲化、亚洲和欧洲蜜蜂。当样本高度混合时,其预测能力会下降。
HBeeID 是一种基于 SNP 的高分辨率基因组工具,可用于识别蜜蜂和筛查入侵物种。其灵活的设计允许通过从其他地点添加样本数据来进行未来的改进。