Suppr超能文献

利用全基因组多基因风险评分提高骨折风险预测能力。

Improved prediction of fracture risk leveraging a genome-wide polygenic risk score.

机构信息

Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Room H-413, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, Quebec, H3T 1E2, Canada.

Quantitative Life Sciences Program, McGill University, Montreal, Canada.

出版信息

Genome Med. 2021 Feb 3;13(1):16. doi: 10.1186/s13073-021-00838-6.

Abstract

BACKGROUND

Accurately quantifying the risk of osteoporotic fracture is important for directing appropriate clinical interventions. While skeletal measures such as heel quantitative speed of sound (SOS) and dual-energy X-ray absorptiometry bone mineral density are able to predict the risk of osteoporotic fracture, the utility of such measurements is subject to the availability of equipment and human resources. Using data from 341,449 individuals of white British ancestry, we previously developed a genome-wide polygenic risk score (PRS), called gSOS, that captured 25.0% of the total variance in SOS. Here, we test whether gSOS can improve fracture risk prediction.

METHODS

We examined the predictive power of gSOS in five genome-wide genotyped cohorts, including 90,172 individuals of European ancestry and 25,034 individuals of Asian ancestry. We calculated gSOS for each individual and tested for the association between gSOS and incident major osteoporotic fracture and hip fracture. We tested whether adding gSOS to the risk prediction models had added value over models using other commonly used clinical risk factors.

RESULTS

A standard deviation decrease in gSOS was associated with an increased odds of incident major osteoporotic fracture in populations of European ancestry, with odds ratios ranging from 1.35 to 1.46 in four cohorts. It was also associated with a 1.26-fold (95% confidence interval (CI) 1.13-1.41) increased odds of incident major osteoporotic fracture in the Asian population. We demonstrated that gSOS was more predictive of incident major osteoporotic fracture (area under the receiver operating characteristic curve (AUROC) = 0.734; 95% CI 0.727-0.740) and incident hip fracture (AUROC = 0.798; 95% CI 0.791-0.805) than most traditional clinical risk factors, including prior fracture, use of corticosteroids, rheumatoid arthritis, and smoking. We also showed that adding gSOS to the Fracture Risk Assessment Tool (FRAX) could refine the risk prediction with a positive net reclassification index ranging from 0.024 to 0.072.

CONCLUSIONS

We generated and validated a PRS for SOS which was associated with the risk of fracture. This score was more strongly associated with the risk of fracture than many clinical risk factors and provided an improvement in risk prediction. gSOS should be explored as a tool to improve risk stratification to identify individuals at high risk of fracture.

摘要

背景

准确量化骨质疏松性骨折的风险对于指导适当的临床干预至关重要。虽然骨骼测量,如脚跟定量声速(SOS)和双能 X 射线吸收法骨矿物质密度,能够预测骨质疏松性骨折的风险,但这些测量的效用受到设备和人力资源的可用性的限制。我们先前使用来自 341,449 名白种英国人的数据,开发了一种全基因组多基因风险评分(PRS),称为 gSOS,该评分可捕获 SOS 总方差的 25.0%。在这里,我们测试 gSOS 是否可以改善骨折风险预测。

方法

我们在五个全基因组基因分型队列中检验了 gSOS 的预测能力,包括 90,172 名欧洲血统个体和 25,034 名亚洲血统个体。我们为每个个体计算了 gSOS,并测试了 gSOS 与主要骨质疏松性骨折和髋部骨折的发生率之间的关联。我们测试了在风险预测模型中添加 gSOS 是否比使用其他常用临床危险因素的模型具有附加价值。

结果

在欧洲人群中,gSOS 标准偏差降低与主要骨质疏松性骨折发生率增加相关,四个队列中比值比范围为 1.35 至 1.46。它还与亚洲人群中主要骨质疏松性骨折发生率增加 1.26 倍(95%置信区间(CI)1.13-1.41)相关。我们证明 gSOS 对主要骨质疏松性骨折(受试者工作特征曲线下面积(AUROC)= 0.734;95%CI 0.727-0.740)和髋部骨折(AUROC = 0.798;95%CI 0.791-0.805)的预测优于大多数传统临床危险因素,包括既往骨折、皮质类固醇使用、类风湿关节炎和吸烟。我们还表明,将 gSOS 添加到骨折风险评估工具(FRAX)中可以通过正净重新分类指数从 0.024 到 0.072 来改善风险预测。

结论

我们生成并验证了与骨折风险相关的 SOS 的 PRS。该评分与骨折风险的相关性强于许多临床危险因素,并提供了风险预测的改善。gSOS 应该被探索作为一种工具,以改善风险分层,以识别高骨折风险的个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6617/7860212/741fa4c4e55a/13073_2021_838_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验