Suppr超能文献

基因增强型双能X线吸收法骨密度预测模型在不同种族和地理人群中的性能差异:一项风险预测研究。

Variability in performance of genetic-enhanced DXA-BMD prediction models across diverse ethnic and geographic populations: A risk prediction study.

作者信息

Liu Yong, Meng Xiang-He, Wu Chong, Su Kuan-Jui, Liu Anqi, Tian Qing, Zhao Lan-Juan, Qiu Chuan, Luo Zhe, Gonzalez-Ramirez Martha I, Shen Hui, Xiao Hong-Mei, Deng Hong-Wen

机构信息

Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.

Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan Province, China.

出版信息

PLoS Med. 2024 Aug 30;21(8):e1004451. doi: 10.1371/journal.pmed.1004451. eCollection 2024 Aug.

Abstract

BACKGROUND

Osteoporosis is a major global health issue, weakening bones and increasing fracture risk. Dual-energy X-ray absorptiometry (DXA) is the standard for measuring bone mineral density (BMD) and diagnosing osteoporosis, but its costliness and complexity impede widespread screening adoption. Predictive modeling using genetic and clinical data offers a cost-effective alternative for assessing osteoporosis and fracture risk. This study aims to develop BMD prediction models using data from the UK Biobank (UKBB) and test their performance across different ethnic and geographical populations.

METHODS AND FINDINGS

We developed BMD prediction models for the femoral neck (FNK) and lumbar spine (SPN) using both genetic variants and clinical factors (such as sex, age, height, and weight), within 17,964 British white individuals from UKBB. Models based on regression with least absolute shrinkage and selection operator (LASSO), selected based on the coefficient of determination (R2) from a model selection subset of 5,973 individuals from British white population. These models were tested on 5 UKBB test sets and 12 independent cohorts of diverse ancestries, totaling over 15,000 individuals. Furthermore, we assessed the correlation of predicted BMDs with fragility fractures risk in 10 years in a case-control set of 287,183 European white participants without DXA-BMDs in the UKBB. With single-nucleotide polymorphism (SNP) inclusion thresholds at 5×10-6 and 5×10-7, the prediction models for FNK-BMD and SPN-BMD achieved the highest R2 of 27.70% with a 95% confidence interval (CI) of [27.56%, 27.84%] and 48.28% (95% CI [48.23%, 48.34%]), respectively. Adding genetic factors improved predictions slightly, explaining an additional 2.3% variation for FNK-BMD and 3% for SPN-BMD over clinical factors alone. Survival analysis revealed that the predicted FNK-BMD and SPN-BMD were significantly associated with fragility fracture risk in the European white population (P < 0.001). The hazard ratios (HRs) of the predicted FNK-BMD and SPN-BMD were 0.83 (95% CI [0.79, 0.88], corresponding to a 1.44% difference in 10-year absolute risk) and 0.72 (95% CI [0.68, 0.76], corresponding to a 1.64% difference in 10-year absolute risk), respectively, indicating that for every increase of one standard deviation in BMD, the fracture risk will decrease by 17% and 28%, respectively. However, the model's performance declined in other ethnic groups and independent cohorts. The limitations of this study include differences in clinical factors distribution and the use of only SNPs as genetic factors.

CONCLUSIONS

In this study, we observed that combining genetic and clinical factors improves BMD prediction compared to clinical factors alone. Adjusting inclusion thresholds for genetic variants (e.g., 5×10-6 or 5×10-7) rather than solely considering genome-wide association study (GWAS)-significant variants can enhance the model's explanatory power. The study highlights the need for training models on diverse populations to improve predictive performance across various ethnic and geographical groups.

摘要

背景

骨质疏松症是一个重大的全球健康问题,会削弱骨骼并增加骨折风险。双能X线吸收法(DXA)是测量骨密度(BMD)和诊断骨质疏松症的标准方法,但其成本高且操作复杂,阻碍了广泛的筛查应用。利用基因和临床数据进行预测建模为评估骨质疏松症和骨折风险提供了一种经济有效的替代方法。本研究旨在利用英国生物银行(UKBB)的数据开发骨密度预测模型,并在不同种族和地理人群中测试其性能。

方法和结果

我们在UKBB的17964名英国白人个体中,利用基因变异和临床因素(如性别、年龄、身高和体重)开发了股骨颈(FNK)和腰椎(SPN)的骨密度预测模型。基于最小绝对收缩和选择算子(LASSO)回归的模型,根据来自英国白人人群的5973名个体的模型选择子集的决定系数(R2)进行选择。这些模型在5个UKBB测试集和12个不同血统的独立队列中进行了测试,共有超过15000名个体。此外,我们在UKBB中一组287183名没有DXA-BMD的欧洲白人参与者的病例对照集中,评估了预测的骨密度与10年内脆性骨折风险的相关性。当单核苷酸多态性(SNP)纳入阈值为5×10-6和5×10-7时,FNK-BMD和SPN-BMD的预测模型分别达到了最高R2为27.70%,95%置信区间(CI)为[27.56%,27.84%]和48.28%(95%CI[48.23%,48.34%])。添加基因因素略微改善了预测,相比于仅使用临床因素,分别额外解释了FNK-BMD的2.3%变异和SPN-BMD的3%变异。生存分析显示,在欧洲白人人群中,预测的FNK-BMD和SPN-BMD与脆性骨折风险显著相关(P<0.001)。预测的FNK-BMD和SPN-BMD的风险比(HR)分别为0.83(95%CI[0.79,0.88],对应10年绝对风险差异为1.44%)和0.72(95%CI[0.68,0.76],对应10年绝对风险差异为1.64%),表明骨密度每增加一个标准差,骨折风险将分别降低17%和28%。然而,该模型在其他种族群体和独立队列中的性能有所下降。本研究的局限性包括临床因素分布的差异以及仅将SNP作为基因因素使用。

结论

在本研究中,我们观察到与仅使用临床因素相比,结合基因和临床因素可改善骨密度预测。调整基因变异的纳入阈值(例如5×10-6或5×10-7),而不是仅考虑全基因组关联研究(GWAS)显著的变异,可以增强模型的解释力。该研究强调需要在不同人群上训练模型,以提高在各种种族和地理群体中的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8328/11404845/73afbb94ac7b/pmed.1004451.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验