Hanuka A, Emma C, Maxwell T, Fisher A S, Jacobson B, Hogan M J, Huang Z
SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
Sci Rep. 2021 Feb 3;11(1):2945. doi: 10.1038/s41598-021-82473-0.
Longitudinal phase space (LPS) provides a critical information about electron beam dynamics for various scientific applications. For example, it can give insight into the high-brightness X-ray radiation from a free electron laser. Existing diagnostics are invasive, and often times cannot operate at the required resolution. In this work we present a machine learning-based Virtual Diagnostic (VD) tool to accurately predict the LPS for every shot using spectral information collected non-destructively from the radiation of relativistic electron beam. We demonstrate the tool's accuracy for three different case studies with experimental or simulated data. For each case, we introduce a method to increase the confidence in the VD tool. We anticipate that spectral VD would improve the setup and understanding of experimental configurations at DOE's user facilities as well as data sorting and analysis. The spectral VD can provide confident knowledge of the longitudinal bunch properties at the next generation of high-repetition rate linear accelerators while reducing the load on data storage, readout and streaming requirements.
纵向相空间(LPS)为各种科学应用提供了有关电子束动力学的关键信息。例如,它可以深入了解自由电子激光产生的高亮度X射线辐射。现有的诊断方法具有侵入性,而且往往无法以所需的分辨率运行。在这项工作中,我们提出了一种基于机器学习的虚拟诊断(VD)工具,该工具利用从相对论电子束辐射中无损收集的光谱信息,准确预测每次脉冲的LPS。我们通过实验或模拟数据对三个不同的案例研究证明了该工具的准确性。对于每个案例,我们都介绍了一种提高对VD工具信心的方法。我们预计,光谱虚拟诊断将改善美国能源部用户设施中实验配置的设置和理解,以及数据分类和分析。光谱虚拟诊断可以在下一代高重复率线性加速器中提供关于纵向束团特性的确切知识,同时减少数据存储、读出和流传输要求的负担。