Scheinker Alexander, Cropp Frederick, Paiagua Sergio, Filippetto Daniele
Applied Electrodynamics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, 90095, USA.
Sci Rep. 2021 Sep 28;11(1):19187. doi: 10.1038/s41598-021-98785-0.
Machine learning (ML) tools are able to learn relationships between the inputs and outputs of large complex systems directly from data. However, for time-varying systems, the predictive capabilities of ML tools degrade if the systems are no longer accurately represented by the data with which the ML models were trained. For complex systems, re-training is only possible if the changes are slow relative to the rate at which large numbers of new input-output training data can be non-invasively recorded. In this work, we present an approach to deep learning for time-varying systems that does not require re-training, but uses instead an adaptive feedback in the architecture of deep convolutional neural networks (CNN). The feedback is based only on available system output measurements and is applied in the encoded low-dimensional dense layers of the encoder-decoder CNNs. First, we develop an inverse model of a complex accelerator system to map output beam measurements to input beam distributions, while both the accelerator components and the unknown input beam distribution vary rapidly with time. We then demonstrate our method on experimental measurements of the input and output beam distributions of the HiRES ultra-fast electron diffraction (UED) beam line at Lawrence Berkeley National Laboratory, and showcase its ability for automatic tracking of the time varying photocathode quantum efficiency map. Our method can be successfully used to aid both physics and ML-based surrogate online models to provide non-invasive beam diagnostics.
机器学习(ML)工具能够直接从数据中学习大型复杂系统的输入与输出之间的关系。然而,对于时变系统,如果ML模型所训练的数据无法再准确表示这些系统,那么ML工具的预测能力就会下降。对于复杂系统,只有当变化相对于能够以非侵入方式记录大量新的输入 - 输出训练数据的速率较慢时,重新训练才有可能。在这项工作中,我们提出了一种针对时变系统的深度学习方法,该方法不需要重新训练,而是在深度卷积神经网络(CNN)的架构中使用自适应反馈。这种反馈仅基于可用的系统输出测量值,并应用于编码器 - 解码器CNN的编码低维密集层。首先,我们开发了一个复杂加速器系统的逆模型,以便将输出束流测量值映射到输入束流分布,而加速器组件和未知的输入束流分布都随时间快速变化。然后,我们在劳伦斯伯克利国家实验室的HiRES超快电子衍射(UED)束线的输入和输出束流分布的实验测量中展示了我们的方法,并展示了其自动跟踪随时间变化的光阴极量子效率图的能力。我们的方法可以成功地用于辅助基于物理和基于ML的替代在线模型,以提供非侵入性束流诊断。