Suppr超能文献

细菌活性物质中时空有序性的黏弹性控制。

Viscoelastic control of spatiotemporal order in bacterial active matter.

机构信息

Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, P. R. China.

Department of Physics and Soft and Living Matter Program, Syracuse University, Syracuse, NY, USA.

出版信息

Nature. 2021 Feb;590(7844):80-84. doi: 10.1038/s41586-020-03168-6. Epub 2021 Feb 3.

Abstract

Active matter consists of units that generate mechanical work by consuming energy. Examples include living systems (such as assemblies of bacteria and biological tissues), biopolymers driven by molecular motors and suspensions of synthetic self-propelled particles. A central goal is to understand and control the self-organization of active assemblies in space and time. Most active systems exhibit either spatial order mediated by interactions that coordinate the spatial structure and the motion of active agents or the temporal synchronization of individual oscillatory dynamics. The simultaneous control of spatial and temporal organization is more challenging and generally requires complex interactions, such as reaction-diffusion hierarchies or genetically engineered cellular circuits. Here we report a simple technique to simultaneously control the spatial and temporal self-organization of bacterial active matter. We confine dense active suspensions of Escherichia coli cells and manipulate a single macroscopic parameter-namely, the viscoelasticity of the suspending fluid- through the addition of purified genomic DNA. This reveals self-driven spatial and temporal organization in the form of a millimetre-scale rotating vortex with periodically oscillating global chirality of tunable frequency, reminiscent of a torsional pendulum. By combining experiments with an active-matter model, we explain this behaviour in terms of the interplay between active forcing and viscoelastic stress relaxation. Our findings provide insight into the influence of bacterial motile behaviour in complex fluids, which may be of interest in health- and ecology-related research, and demonstrate experimentally that rheological properties can be harnessed to control active-matter flows. We envisage that our millimetre-scale, tunable, self-oscillating bacterial vortex may be coupled to actuation systems to act a 'clock generator' capable of providing timing signals for rhythmic locomotion of soft robots and for programmed microfluidic pumping, for example, by triggering the action of a shift register in soft-robotic logic devices.

摘要

活性物质由通过消耗能量来产生机械功的单元组成。例如,活系统(例如细菌和生物组织的组合)、由分子马达驱动的生物聚合物以及合成自推进颗粒的悬浮液。一个核心目标是理解和控制活性组装体在空间和时间上的自组织。大多数活性系统表现出通过协调活性剂的空间结构和运动的相互作用介导的空间秩序,或者个体振荡动力学的时间同步。同时控制空间和时间组织更具挑战性,通常需要复杂的相互作用,例如反应扩散层次结构或基因工程细胞电路。在这里,我们报告了一种简单的技术,可以同时控制细菌活性物质的空间和时间自组织。我们限制了密集的大肠杆菌细胞活性悬浮液,并通过添加纯化的基因组 DNA 来操纵单个宏观参数-即悬浮液的粘弹性。这揭示了以毫米级旋转涡旋的形式出现的自驱动空间和时间组织,其全局手性周期性振荡,频率可调,类似于扭转摆。通过将实验与活性物质模型相结合,我们根据活性力和粘弹性应力松弛的相互作用解释了这种行为。我们的发现提供了对复杂流体中细菌运动行为的影响的深入了解,这可能对健康和生态相关研究感兴趣,并通过实验证明了流变性质可以被利用来控制活性物质流。我们设想我们的毫米级、可调谐、自振荡的细菌涡旋可以与致动系统耦合,充当“时钟发生器”,为软机器人的节奏运动和程序化微流泵送提供定时信号,例如通过在软机器人逻辑设备中触发移位寄存器的动作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验