文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在压力下联合:细菌生存边缘出现的高速运输网络。

United under stress: High-speed transport network emerging at bacterial living edge.

作者信息

Wen Xiaodong, Feng Jingjing, Sang Yuqian, Ge Feng, Chaté Hugues, He Yan

机构信息

Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tshinghua University, Beijing 100084, China.

Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, Gif-sur-Yvette 91191, France.

出版信息

Fundam Res. 2022 May 14;4(3):563-569. doi: 10.1016/j.fmre.2022.05.003. eCollection 2024 May.


DOI:10.1016/j.fmre.2022.05.003
PMID:38933215
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11197528/
Abstract

Individuals tend to move freely when there is enough room but would act collectively for their survival under external stress. In the case of living cells, for instance, when a drop of low-density flagellated bacterial solution is transferred onto the agar surface, the initially disordered movement of individual bacteria would be replaced with coordinated cell swarming after a lag phase of a few hours. Here, we study how such cooperation is established while overcoming the disorder at the onset of the lag phase with single nanoparticle tracking. Upon the spreading of the droplet, the bacteria in the solution cluster and align near the almost immobilized contact line confining the drop, forming a narrow ring of cells. As individual cells move in and out of the ring continuously, certain flow patterns emerge in the inter-bacterial fluid. We reveal high-speed long-distance unidirectional flows with definite chirality along the outside of the ring, along the inside of the ring and across the ring. We speculate that these flows enable the fast and efficient transport, facilitating the communication and unification of the bacterial community.

摘要

当有足够空间时,个体倾向于自由移动,但在外部压力下会为了生存而集体行动。例如,就活细胞而言,当一滴低密度鞭毛细菌溶液转移到琼脂表面时,最初单个细菌的无序运动会在几个小时的延迟期后被协调的细胞群体运动所取代。在这里,我们通过单纳米颗粒追踪研究在延迟期开始时克服无序状态的同时,这种合作是如何建立的。液滴扩散时,溶液中的细菌聚集并在限制液滴的几乎固定的接触线附近排列,形成一个狭窄的细胞环。随着单个细胞不断进出这个环,细菌间的流体中会出现某些流动模式。我们揭示了沿着环的外侧、内侧以及穿过环具有确定手性的高速长距离单向流动。我们推测这些流动能够实现快速高效的运输,促进细菌群落的交流与统一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a57/11197528/8e486ea2a1ad/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a57/11197528/c0e4488f20ca/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a57/11197528/947d674d4f26/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a57/11197528/9ff5f694466f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a57/11197528/4ef14dd8273f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a57/11197528/8e486ea2a1ad/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a57/11197528/c0e4488f20ca/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a57/11197528/947d674d4f26/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a57/11197528/9ff5f694466f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a57/11197528/4ef14dd8273f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a57/11197528/8e486ea2a1ad/gr4.jpg

相似文献

[1]
United under stress: High-speed transport network emerging at bacterial living edge.

Fundam Res. 2022-5-14

[2]
Single Nanoparticle Tracking Reveals Efficient Long-Distance Undercurrent Transport in Upper Fluid of Bacterial Swarms.

iScience. 2019-12-20

[3]
Size-Dependent Dried Colloidal Deposit and Particle Sorting via Saturated Alcohol Vapor-Mediated Sessile Droplet Spreading.

Langmuir. 2022-5-17

[4]
Long-distance Transport in Bacterial Swarms Revealed by Single Nanoparticle Tracking.

Bio Protoc. 2020-11-5

[5]
Surfactant solutions and porous substrates: spreading and imbibition.

Adv Colloid Interface Sci. 2004-11-29

[6]
Water reservoir maintained by cell growth fuels the spreading of a bacterial swarm.

Proc Natl Acad Sci U S A. 2012-2-27

[7]
High-throughput, single-particle tracking reveals nested membrane domains that dictate KRas diffusion and trafficking.

Elife. 2019-11-1

[8]
Microbubbles reveal chiral fluid flows in bacterial swarms.

Proc Natl Acad Sci U S A. 2011-2-7

[9]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[10]
How cells flow in the spreading of cellular aggregates.

Proc Natl Acad Sci U S A. 2014-5-16

本文引用的文献

[1]
Personalized cancer vaccines from bacteria-derived outer membrane vesicles with antibody-mediated persistent uptake by dendritic cells.

Fundam Res. 2021-12-22

[2]
Viscoelastic control of spatiotemporal order in bacterial active matter.

Nature. 2021-2

[3]
Single Nanoparticle Tracking Reveals Efficient Long-Distance Undercurrent Transport in Upper Fluid of Bacterial Swarms.

iScience. 2019-12-20

[4]
Self-organization of swimmers drives long-range fluid transport in bacterial colonies.

Nat Commun. 2019-4-17

[5]
Lag Phase Is a Dynamic, Organized, Adaptive, and Evolvable Period That Prepares Bacteria for Cell Division.

J Bacteriol. 2019-3-13

[6]
Learning the space-time phase diagram of bacterial swarm expansion.

Proc Natl Acad Sci U S A. 2019-1-11

[7]
Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication.

Nat Cell Biol. 2019-1-2

[8]
Helical micropumps near surfaces.

Biomicrofluidics. 2018-1-19

[9]
Progress in and promise of bacterial quorum sensing research.

Nature. 2017-11-15

[10]
Weak synchronization and large-scale collective oscillation in dense bacterial suspensions.

Nature. 2017-1-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索