Suppr超能文献

跨表征信号与衔接支持对图文文档的推理理解。

Cross-Representational Signaling and Cohesion Support Inferential Comprehension of Text-Picture Documents.

作者信息

Désiron Juliette C, Bétrancourt Mireille, de Vries Erica

机构信息

Technologies de Formation et Apprentissage (TECFA), Faculty of Psychology and Education, University of Geneva, Geneva, Switzerland.

LaRAC, Univ. Grenoble Alpes, Grenoble, France.

出版信息

Front Psychol. 2021 Jan 18;11:592509. doi: 10.3389/fpsyg.2020.592509. eCollection 2020.

Abstract

Learning from a text-picture multimedia document is particularly effective if learners can link information within the text and across the verbal and the pictorial representations. The ability to create a mental model successfully and include those implicit links is related to the ability to generate inferences. Text processing research has found that text cohesion facilitates the generation of inferences, and thus text comprehension for learners with poor prior knowledge or reading abilities, but is detrimental for learners with good prior knowledge or reading abilities. Moreover, multimedia research has found a positive effect from adding visual representations to text information, particularly when implementing signaling, which consists of verbal or visual cues designed to guide attention to the pictorial representation of relevant information. We expected that, as with text-only documents, struggling readers would benefit from high text cohesion (Hypothesis 1) and that signaling would foster inference generation as well (Hypothesis 2). Further, we hypothesized that better learning outcomes would be observed when text cohesion was low and signaling was present (Hypothesis 3). Our first experimental study investigated the effect of those two factors (cohesion and signaling) on three levels of comprehension (text based, local inferences, global inferences). Participants were adolescents in prevocational schools ( = 95), where some of the students are struggling readers. The results showed a trend in favor of high cohesion, but with no significant effect, a significant positive effect of cross-representational signaling (CRS) on comprehension from local inferences, and no interaction effect. A second experiment focused on signaling only and attention toward the picture, with collection of eye-tracking data in addition to measures of offline comprehension. As this study was conducted with university students ( = 47), who are expected to have higher reading abilities and thus are less likely to benefit from high cohesion, the material was presented in its low cohesive version. The results showed no effect of conditions on comprehension performances but confirmed differences in processing behaviors. Participants allocated more attention to the pictorial representation in the CRS condition than in the no signaling condition.

摘要

如果学习者能够将文本中的信息以及文字与图片表述之间的信息联系起来,那么从图文多媒体文档中学习会特别有效。成功创建心理模型并纳入这些隐含联系的能力与进行推理的能力相关。文本处理研究发现,文本衔接有助于推理的产生,因此对先前知识或阅读能力较差的学习者的文本理解有帮助,但对先前知识或阅读能力较好的学习者则有不利影响。此外,多媒体研究发现,在文本信息中添加视觉表征会产生积极影响,特别是在实施信号提示时,信号提示由旨在引导对相关信息的图片表征予以关注的文字或视觉线索组成。我们预期,与纯文本文件一样,阅读困难的读者会从高文本衔接中受益(假设1),信号提示也会促进推理的产生(假设2)。此外,我们假设,当文本衔接程度低且存在信号提示时,会观察到更好的学习效果(假设3)。我们的第一项实验研究调查了这两个因素(衔接和信号提示)对三个理解水平(基于文本的理解、局部推理、全局推理)的影响。参与者是职业预校的青少年(=95),其中一些学生是阅读困难者。结果显示出倾向于高衔接的趋势,但无显著影响,跨表征信号提示(CRS)对局部推理的理解有显著的积极影响,且无交互作用。第二项实验仅关注信号提示以及对图片的关注,除了离线理解测量外,还收集了眼动追踪数据。由于这项研究是针对大学生(=47)进行的,预计他们有较高的阅读能力,因此从高衔接中受益的可能性较小,所以材料以低衔接版本呈现。结果显示条件对理解表现没有影响,但证实了处理行为上的差异。与无信号提示条件相比,参与者在CRS条件下对图片表征的关注更多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03e4/7847939/2585a2e958cd/fpsyg-11-592509-g001.jpg

相似文献

本文引用的文献

2
Revisiting the simple view of reading.重新审视阅读的简单观点。
Br J Educ Psychol. 2009 Jun;79(Pt 2):353-70. doi: 10.1348/978185408X369020. Epub 2008 Dec 16.
4
Coh-metrix: analysis of text on cohesion and language.Coh - metrix:衔接与语言文本分析
Behav Res Methods Instrum Comput. 2004 May;36(2):193-202. doi: 10.3758/bf03195564.
7
Measurement of cognitive load in instructional research.教学研究中认知负荷的测量。
Percept Mot Skills. 1994 Aug;79(1 Pt 2):419-30. doi: 10.2466/pms.1994.79.1.419.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验