Suppr超能文献

肌腱、韧带和骨骼肌组织工程中的生物机械学。

Mechanobiology in Tendon, Ligament, and Skeletal Muscle Tissue Engineering.

机构信息

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180.

出版信息

J Biomech Eng. 2021 Jul 1;143(7). doi: 10.1115/1.4050035.

Abstract

Tendon, ligament, and skeletal muscle are highly organized tissues that largely rely on a hierarchical collagenous matrix to withstand high tensile loads experienced in activities of daily life. This critical biomechanical role predisposes these tissues to injury, and current treatments fail to recapitulate the biomechanical function of native tissue. This has prompted researchers to pursue engineering functional tissue replacements, or dysfunction/disease/development models, by emulating in vivo stimuli within in vitro tissue engineering platforms-specifically mechanical stimulation, as well as active contraction in skeletal muscle. Mechanical loading is critical for matrix production and organization in the development, maturation, and maintenance of native tendon, ligament, and skeletal muscle, as well as their interfaces. Tissue engineers seek to harness these mechanobiological benefits using bioreactors to apply both static and dynamic mechanical stimulation to tissue constructs, and induce active contraction in engineered skeletal muscle. The vast majority of engineering approaches in these tissues are scaffold-based, providing interim structure and support to engineered constructs, and sufficient integrity to withstand mechanical loading. Alternatively, some recent studies have employed developmentally inspired scaffold-free techniques, relying on cellular self-assembly and matrix production to form tissue constructs. Whether utilizing a scaffold or not, incorporation of mechanobiological stimuli has been shown to improve the composition, structure, and biomechanical function of engineered tendon, ligament, and skeletal muscle. Together, these findings highlight the importance of mechanobiology and suggest how it can be leveraged to engineer these tissues and their interfaces, and to create functional multitissue constructs.

摘要

肌腱、韧带和骨骼肌是高度组织化的组织,主要依赖于分层胶原基质来承受日常生活活动中所经历的高拉伸载荷。这种关键的生物力学作用使这些组织容易受伤,而目前的治疗方法无法再现天然组织的生物力学功能。这促使研究人员通过在体外组织工程平台中模拟体内刺激,特别是机械刺激以及骨骼肌的主动收缩,来追求工程功能性组织替代物或功能障碍/疾病/发育模型。机械加载对于天然肌腱、韧带和骨骼肌及其界面的发育、成熟和维持中的基质产生和组织至关重要。组织工程师试图利用生物反应器将静态和动态机械刺激应用于组织构建体,并诱导工程化骨骼肌的主动收缩,从而利用这些机械生物学益处。在这些组织中,绝大多数工程方法都是基于支架的,为工程化构建体提供临时结构和支撑,并具有足够的完整性以承受机械加载。或者,一些最近的研究采用了发育启发的无支架技术,依赖于细胞的自组装和基质产生来形成组织构建体。无论是否使用支架,机械生物学刺激的结合已被证明可以改善工程化肌腱、韧带和骨骼肌的组成、结构和生物力学功能。这些发现共同强调了机械生物学的重要性,并提出了如何利用它来工程化这些组织及其界面,并创建功能性多组织构建体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验